• Title/Summary/Keyword: high-damping rubber

Search Result 86, Processing Time 0.021 seconds

Investigation on Vibration Control of Squeeze Mode ER Mount Subjected to 200 kg of Static Load (200 kg급 압착모드형 ER 마운트의 진동제어성능 고찰)

  • 정우진;정의봉;홍성룡;최승복
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.882-889
    • /
    • 2002
  • This paper presents vibration control performance of a squeeze mode ER mount for high static load. After experimentally investigating the field-dependent damping force under the squeeze mode motion, a squeeze mode ER mount which can support 200 kg of static load is designed and manufactured. Displacement transmissibility of the proposed ER mount is experimentally evaluated in frequency domain with respect to the intensity of the electric field, and a sky-hook control algorithm is designed to attenuate unwanted vibration. Vibration isolation capabilities of the flow mode ER mount and rubber mount are compared to those of the proposed squeeze mode ER mount.

Hybrid Rubber Mount by Using Magnetic Force (자력을 이용한 하이브리드 고무 마운트)

  • Ahn, Young Kong;Kim, Dong-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.236-246
    • /
    • 2014
  • This paper presents a hybrid rubber mount with magnet to isolate effectively the vibration in vehicle, forklift, and so on. The hybrid mount does not have any controller of the magnetic force. Dynamic stiffness of the mount is reduced by only magnetic suction according to the applied magnetic field and damping coefficient increased. Performance of conventional rubber mount with using electromagnet has been investigated by MTS Tester. The governing equation of the hybrid mount was derived and verified by comparison with experimental and theoretical results. The equation can be used practically and usefully in the design of the mount and analysis of the mounting system. The hybrid mount provides excellent performance in vibration isolation and its structure is very simpler than active with controller and a semi-active mount with a functional fluid. Furthermore, production cost of the mount using permanent magnets is very lower than that of the active mount with electromagnets. Therefore, commercial potential of the mount is very high.

Multi-support excitation shaking table test of a base-isolated steel cable-stayed bridge (지진격리 강재 케이블 교량의 다지점 진동대 실험)

  • Kim, Seong-Do;Ahn, Jin-Hee;Kong, Young-Ee;Choi, Hyoung-Suk;Cheung, Jin-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.161-171
    • /
    • 2015
  • A series of tests was conducted for full-scale single-pylon asymmetric cable-stayed bridges using a system of multiple shaking tables. The 2-span bridge length was 28 m, and the pylon height was 10.2 m. 4 different base conditions were considered: the fixed condition, RB (rubber bearings), LRB (lead rubber bearings), and HDRB (high damping rubber bearings). Based on investigation of the seismic response, the accelerations and displacements in the axial direction of the isolated bridge were increased compared to non-isolated case. However, the strain of the pylon was decreased, because the major mode of the structure was changed to translation for the axial direction due to the dynamic mass. The response of the cable bridge could differ from the desired response according to the locations and characteristics of the seismic isolator. Therefore, caution is required in the design and prediction in regard to the location and behavior of the seismic isolator.

New approach in design of seismic isolated buildings applying clusters of rubber bearings in isolation systems

  • Melkumyan, Mikayel G.
    • Earthquakes and Structures
    • /
    • v.4 no.6
    • /
    • pp.587-606
    • /
    • 2013
  • The given paper presents a new approach in design of seismic isolation systems of base isolated buildings. The idea is to install not one big size rubber bearing under the columns and/or shear walls, or one by one with certain spacing under the load-bearing walls, but to install a group/cluster of small size bearings, in order to increase the overall effectiveness of the isolation system. The advantages of this approach are listed and illustrated by the examples. Also the results of analyses of some buildings where the approach on installation of clusters of rubber bearings was used in their isolation systems are given for two cases: i) when the analyses are carried out based on the provisions of the Armenian Seismic Code, and ii) when the time history analyses are carried out. Obtained results are compared and discussed. Paper also presents, as an example, detailed analysis and design of the 18-story unique building in one of the residential complexes in Yerevan. Earthquake response analyses of this building were carried out in two versions, i.e. when the building is base isolated and when it is fixed base. Several time histories were used in the analyses. Comparison of the obtained results indicates the high effectiveness of the proposed structural concepts of isolation systems and the need for further improvement of the Seismic Code provisions regarding the values of the reduction factors. A separate section in the paper dedicated to the design of high damping laminated rubber-steel bearings and to results of their tests.

Effect of Carbon Black on Mechanical and Damping Properties of EPDM/Carbon Black System (EPDM/Carbon Black계에서 Carbon Black에 따른 기계적 성질 및 방진 특성)

  • No, Tae-Kyeong;Kang, Dong-Guk;Seo, Jae-Sik;Yang, Kyung-Mo;Seo, Kwan-Ho
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.231-237
    • /
    • 2012
  • This study measured the mechanical and damping properties of EPDM compounds including fillers. Semi-reinforcing furnace black (SRF), high abrasion furnace black (HAF) and acetylene black were used as fillers. Dicumyl peroxide (DCP) were used as curing agents. The measurements were conducted using a moving die rheometer (MDR), durometer, universal testing machine (UTM), compression set and dynamic mechanical analysis (DMA). The tensile strength and elongation at break increased with increasing SRF contents in EPDM compounds. However, they decreased with increasing the amount of acetylene black. In the inspecting temperature range, EPDM compound filled acetylene black had stable storage modulus. Furthermore, the tan ${\delta}$ of the EPDM compounds obtained was enhanced by compounding with acetylene black.

Full-scale Shaking Table Test of Uninterruptible Power Supply Installed in 2-stories Steel Structure (2층 철골 구조물에 설치된 무정전전원장치의 실규모 진동대 실험연구)

  • Lee, Ji-Eon;Park, Won-Il;Choi, Kyoung-Kyu;Oh, Sang-Hoon;Park, Hoon-Yang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.29-38
    • /
    • 2022
  • In this study, the shaking table tests were carried out on six types of non-structural elements installed on a full-scale two-story steel structure. The shaking table tests were performed for non-structural elements with and without seismic isolators. In this study, the seismic performance of Uninterruptible Power Supply (UPS) specimens was tested and investigated. Non-seismic details were composed of conventional channel section steel beams, and the seismic isolators were composed of high damping rubber bearing (HDRB) and wire isolator. The input acceleration time histories were artificially generated to satisfy the requirements proposed by the ICC-ES AC156 code. Based on the test results, the damage and dynamic characteristics of the UPS with the seismic isolator were investigated in terms of the natural frequency, damping ratio, acceleration time history responses, dynamic amplification factors, and relative displacements. The results from the shaking table showed that the dynamic characteristics of the UPS including the acceleration response were significantly improved when using the seismic isolator.

Dynamic Analysis of Inclined Piles and Countermeasures against their Vulnerability (경사말뚝의 동적거동과 내진성능 향상을 위한 실험적 고찰)

  • 김재홍;황재익;김성렬;김명모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.107-114
    • /
    • 2001
  • When group pile supporting structures are to be subjected to large lateral loads, generally, hatter piles are used in group pile with vertical piles. It is well known that batter piles resist lateral static loads which are acted upon the piles as axial farces quite well but, they show a poor performance under seismic loads. However, it is not yet known how the batter piles behave under dynamic loading and how to strengthen the batter piles to improve the seismic performance. Shaking table tests were performed to investigate the seismic behavior of the batter pile and to bring up the countermeasures to improve the seismic performance. As the result of the shaking table tests, batter piles failed due to not only the excessive increase of compressive force near the pile head but also that of tensile force. In case that the pile head was connected with pile cap by rubber joint, the max. acceleration at the pile cap was reduced due to the high damping ratio of rubber and the max. moment and max. axial farce at the pile head was decreased remarkably. When the inclinations(V:H) of the batter pile were 8:3 and 8:4, max. moment, max. shear force, and max. axial farce were reduced notably and max. acceleration and max. displacement at the pile cap was diminished, too.

  • PDF

Nonlinear response of r.c. framed buildings retrofitted by different base-isolation systems under horizontal and vertical components of near-fault earthquakes

  • Mazza, Fabio;Mazza, Mirko;Vulcano, Alfonso
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.135-144
    • /
    • 2017
  • Near-fault ground motions are characterized by high values of the ratio between the peak of vertical and horizontal ground accelerations, which can significantly affect the nonlinear response of a base-isolated structure. To check the effectiveness of different base-isolation systems for retrofitting a r.c. framed structure located in a near-fault area, a numerical investigation is carried out analyzing the nonlinear dynamic response of the fixed-base and isolated structures. For this purpose, a six-storey r.c. framed building is supposed to be retrofitted by insertion of an isolation system at the base for attaining performance levels imposed by current Italian code in a high-risk seismic zone. In particular, elastomeric (e.g., high-damping-laminated-rubber bearings, HDLRBs) and friction (e.g., steel-PTFE sliding bearings, SBs, or friction pendulum bearings, FPBs) isolators are considered, with reference to three cases of base isolation: HDLRBs acting alone (i.e., EBI structures); in-parallel combination of HDLRBs and SBs (i.e., EFBI structures); FPBs acting alone (i.e., FPBI structures). Different values of the stiffness ratio, defined as the ratio between the vertical and horizontal stiffnesses of the HDLRBs, sliding ratio, defined as the global sliding force divided by the maximum sliding force of the SBs, and in-plan distribution of friction coefficient for the FPs are investigated. The EBI, EFBI and FPBI base-isolation systems are designed assuming the same values of the fundamental vibration period and equivalent viscous damping ratio. The nonlinear dynamic analysis is carried out with reference to near-fault earthquakes, selected and scaled on the design hypotheses adopted for the test structures.

Improvement of dynamic characteristics of optical pick-up actuator using ferrofluidic damper (자성유체 댐퍼를 이용한 광픽업 액츄에이터의 동특성 개선)

  • 송병륜;신경식;김진기;남도선;성평용;이주형
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.496-503
    • /
    • 2001
  • The suspension of the optical pickup actuator is damped by the presence of silicone rubber damper bond at its termination. In spite of the presence of it, the actuator still exhibits a strong mechanical resonance which affects its settling time and vibrational characteristics. This resonance can cause errors in reading information from the disk, particularly in high speed CD-ROM and DVD-ROM drives. Ferrofluids are stable colloidal suspensions of sub-micron sized magnetic particles in a carrier liquid. In the actuator design, ferrofluid is applied to the surface of the magnets until the quantity is sufficient to maintain intimate contact with the bobbin/carrier assembly. The fluid is retained in the magnetic field and its viscosity provides the desired mechanical damping to the moving assembly, improving the actuators settling time and vibrational characteristics. Access time is also improved, particularly on warped or eccentric discs.

  • PDF

A Study on the Effect of Low Noise Wheel for the Noise and Vibration Reduction (방음차륜의 소음진동 저감효과에 관한 연구)

  • 김재철;유원희;문경호
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.629-635
    • /
    • 2000
  • Wheel /rail interaction has been known as a major source of railway noise. In this paper, a low noise wheel structure is developed and its effect on noise reduction is investigated. The developed low noise wheel employees a rubber material inserted into a steel rim or mounted on the wheel surface. Since the low noise wheel has low stiffness and high damping ratio compared to a solid wheel, the measurement results show that it reduces the rolling and squeal noise. It turns out that the proposed wheel could reduce interior noise level by 4∼5dB(A) and vehicle vibration level by 7∼10 dB. Although the proposed structure seems to be promising in noise reduction of railway vehicles, the low noise wheel is to be verified in endurance and cost effect.

  • PDF