• Title/Summary/Keyword: high-axial load

Search Result 444, Processing Time 0.033 seconds

Influence of Concrete Strength and Lateral Ties on Behavior of High-Strength Concrete Columns Subjected to Eccentric Compressive Load (편심 압축력을 받는 고강도 콘크리트 기둥의 거동에 미치는 띠철근 및 콘크리트 강도의 영향)

  • Lee, Young Ho;Chung, Heon Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.95-104
    • /
    • 2007
  • This study was focused on the effect of concrete strength and lateral ties of concrete columns subjected to eccentric compressive loads. The twenty-four concrete columns with $200mm{\times}200mm$ square cross-section were tested. The main variables were concrete strength, spacing and configuration of lateral ties, and eccentricity ratios. From the experiment, the followings were investigated ; 1) In all cases, it was observed that the increase of concrete compressive strength led to the decrease of ductility. Also, as the eccentricity ratios increased, the effect of ductility enhancement by lateral ties decreased. 2) As the ties spacing decreased from 100mm to 30mm, the magnitude of axial load acting on the concrete column showed an enhancement of 1.1~1.2 times and the descending curve after a peak moment presented a smooth decline. 3) The high-strength concrete columns required a design of lateral ties to increase the volumetric ratios and density of tie spacing to sustain a proper strength and ductility. Accordingly, regardless of concrete strength, the current AIK design code to specify the maximum tie spacing of concrete columns was proven to lead to the poor strength and ductility for seismic design. Therefore, it is necessary to develop a new seismic design code that connects volumetric ratios and tie spacing of concrete columns with concrete strength.

Experimental Study on Fatigue Characteristics of the Single Spot Welded Joint (점용접재(点熔接材)의 피로(疲勞) 특성(特性)에 관한 실험적(實驗的) 연구(硏究))

  • Chang-Min Suh;Sung-Soo Kang;Nam-Seong Hwang;Yong-Ich Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.214-226
    • /
    • 1992
  • In this paper, the characteristics of fatigue crack growth in the spot welded joint of the same kinds of specimens($HS{\times}HS,\;GA{\times}GAB$) and different kinds of specimens($HS{\times}GA,\;HS{\times}GAB$) which consist of dual phase high strength steel(HS) and monogalvanized steel(GA) were examined with static tension tests and axial tension fatigue tests. Some of the important results are as follows : 1. The divergence of tensile strengths among the same and different kinds of spot welds under the same conditions is comparatively low regardless of the difference of stiffness. 2. At the low load bevel and long life legion, the fatigue crack is initiated near the nugget. However, in the high load level and short life region, it occurs a tittle far from the nugget. 3. It has shown a linear relation between maximum stress Intensity factor, Kmax and fatigue life, $N_f$ among each of the spot welds and has gathered in a narrow band on the log-log graph paper. $Kmax=H{\cdot}{N_f}^{P}$ where H and P are a material constant.

  • PDF

Experimental seismic behaviour of L-CFST column to H-beam connections

  • Zhang, Wang;Chen, Zhihua;Xiong, Qingqing;Zhou, Ting;Rong, Xian;Du, Yansheng
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.793-808
    • /
    • 2018
  • In this study, the seismic performance of the connections between L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) and H-beams used in high-rise steel frame structures was investigated. Seven full-scale specimens were tested under quasi-static cyclic loading. The variables studied in the tests included the joint type, the axial compression ratio, the presence of concrete, the width-to-thickness ratio and the internal extension length of the side plates. The hysteretic response, strength degradation, stiffness degradation, ductility, plastic rotation capacity, energy dissipation capacity and the strain distribution were evaluated at different load cycles. The test results indicated that both the corner and exterior joint specimens failed due to local buckling and crack within the beam flange adjacent to the end of the side plates. However, the failure modes of the interior joint specimens primarily included local buckling and crack at the end plates and curved corners of the beam flange. A design method was proposed for the flexural capacity of the end plate connection in the interior joint. Good agreement was observed between the theoretical and test results of both the yield and ultimate flexural capacity of the end plate connection.

Surface Tribology of Total Ankle Joint Replacement (인공발목관절의 표면 마모 특성)

  • Jeong, Yong-Hoon;Jung, Tae-Gon;Yang, Jae-Woong;Park, Kwang-Min;Lee, Su-Won
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.117-117
    • /
    • 2016
  • Total ankle replacement (TAR) is a visible option in the surgical treatment of degenerative or inflammatory diseases of ankle joint. it is attributed to the current TAR which has improvements in surgical technique, uncemented implant fixation and minimally constrained articulation. In the clinical result, they can show promised surgical result when compared to earlier attempts in TAR. However, TAR is still not as successful as total knee replacement (TKR) or total hip replacement (THR), it needs to be note that there are limitations in concerning of long term performance of TAR, the high failure rate still associated with wear of the PE (polyethylene) component that has related with their material property and surface roughness. The aim of this study was to introduce the tribology characteristics of total ankle joint prosthesis with one of TDR model which was fabricated to try multi-axis wear test as a region of motion in ankle joint. The wear specimen of TDR was prepared with Ti-6Al-4V alloy and UHMWPE (ultra-high molecular weight polyethylene) for tibia-talus and bearing component, respectively. A wear test was carried out using a Force 5 (AMTI, Massachusetts, US) wear simulator which can be allowed to move in three axis to flexion-extension ($+3^{\circ}{\sim}-6^{\circ}$), internal-external axial rotation (${\pm}5^{\circ}$), as well as sinusoidal compressive load (1.6 kN, R=10). All tests were performed following standard ISO 14243, wear rate was calculated with weight loss of UHMWPE bearing while the specimen has tested at certain cycles. As based on the preliminary results, wear rate of UHMWPE bearing was $7.9{\times}10^{-6}mg/cycles$ ($R^2=0.86$), calculated loss weight until $10^7cycles$ was 79 mg, respectively.

  • PDF

A Study on the Long-Term Behavior Characteristics of Buoyancy-Resistant Permanent Anchor (부력저항 영구앵커의 장기거동 특성에 관한 연구)

  • Huh, Byungjoo;Kim, Chanki;Jung, Yonggun;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.12
    • /
    • pp.27-35
    • /
    • 2010
  • The structures built under the groundwater level are affected by the buoyancy force, which is hydrostatic pressure in the up direction. Recently, buoyancy-resistant anchor method has been applied in many cases of the construction of the important structure of large size, which is built under the groundwater level so that it takes high uplift pressure. Even if the construction cost of the method is very high, it surely increases the safety rate. However, the diagnosis of the performance of the buoyancy-resistant permanent anchor and the investigation of resistance mechanism are still insufficient. Especially, the long-term behavior of the anchor has not been studied well due to the difficulty in observation procedure. The contribution of this paper is the establishment of reasonable design methodology. We have measured anchor axial forces for 10 years after the construction, by using an automated measurement and a manual measurement by establishing a load cell in anchor head. Through the data collected from the measurements, we analyze the construction-step behavior of the anchor according to the self-weight variation of the building and the long-term behavior (i.e. movement within 10 years after the construction) of the anchor according to the passage of time.

The Effect of Swirl Intensity on Flow and Combustion Characteristics of Flat Flame Burner (선회도가 평면화염버너의 유동과 연소 특성에 미치는 영향)

  • Jeong, Yong-Gi;Kim, Gyeong-Cheon;Jeon, Chung-Hwan;Jang, Yeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.336-344
    • /
    • 2002
  • In this study, the flow and combustion characteristics of flat flame burner with twirler were investigated. There are several factors that define the characteristics of burner. Among them, the experiments was focused on swirl effect by four types of twirler in terms of flow structure, distribution of temperature and emission characteristics. In PIV(Particle Image Velocimetry) experiment, the less of swirl number, axial flow is dominant at the center. As swirl number increases, the flow develops along the burner tile and backward flow becomes stronger at center. From the combustion characteristics, as long as combustion load increases, blow-off limit was improved. But at the higher swirl number, the limit is decreased. At swirl number 0, the temperature is shown typical distribution of long flame burner. but swirl number increases, the temperature distribution is uniform in front of round tile. Therefore, the temperature distribution is coincided with flow structure. As excess air ratio increases, NO concentrations are high. But high swirl number gives rise to become low NO concentrations. The flame characteristics are comprised in wrinkled laminar-flame regime according to turbulence Reynolds number(Rel) and Damkohler number(Da).

Evaluation of Running Friction Torque of Tapered Roller Bearings Considering Geometric Uncertainty of Roller (롤러의 형상 불확실성을 고려한 테이퍼 롤러 베어링의 구동마찰토크 평가)

  • Jungsoo Park;Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.183-189
    • /
    • 2023
  • A bearing is a mechanical component that transmits rotation and supports loads. According to the type of rotating mechanism, bearings are categorized into ball bearings and tapered roller bearings. Tapered roller bearings have higher load-bearing capabilities than ball bearings. They are used in applications where high loads need to be supported, such as wheel bearings for commercial vehicles and trucks, aircraft and high-speed trains, and heavy-duty spindles for heavy machinery. In recent times, the demand for reducing the driving friction torque in automobiles has been increasing owing to the CO2 emission regulations and fuel efficiency requirements. Accordingly, the research on the driving friction torque of bearings has become more essential. Researchers have conducted various studies on the lubrication, friction, and contact in tapered roller bearings. Although researchers have conducted numerous studies on the friction in the lips and on roller misalignment and skew, studies considering the influence of roller shape, specifically roller shape errors including lips, are few. This study investigates the driving friction torque of tapered roller bearings considering roller geometric uncertainties. Initially, the study calculates the driving friction torque of tapered roller bearings when subjected to axial loads and compares it with experimental results. Additionally, it performs Monte Carlo simulations to evaluate the influence of roller geometric uncertainties (i.e., the effects of roller geometric deviations) on the driving friction torque of the bearings. It then analyzes the results of these simulations.

Seismic Design of Columns in Inverted V-braced Steel Frames Considering Brace Buckling (가새좌굴을 고려한 역 V형 가새골조의 기둥부재 내진설계법)

  • Cho, Chun-Hee;Kim, Jung-Jae;Lee, Cheol-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • According to the capacity design concept which forms the basis of the current steel seismic codes, the braces in concentrically braced frames (CBFs) should dissipate seismic energy through cyclic tension yielding and cyclic compression buckling while the beams and the columns should remain elastic. Brace buckling in inverted V-braced frames induces unbalanced vertical forces which, in turn, impose the additional beam moments and column axial forces. However, due to difficulty in predicting the location of buckling stories, the most conservative approach implied in the design code is to estimate the column axial forces by adding all the unbalanced vertical forces in the upper stories. One alternative approach, less conservative and recommended by the current code, is to estimate the column axial forces based on the amplified seismic load expected at the mechanism-level response. Both are either too conservative or lacking technical foundation. In this paper, three combination rules for a rational estimation of the column axial forces were proposed. The idea central to the three methods is to detect the stories of high buckling potential based on pushover analysis and dynamic behavior. The unbalanced vertical forces in the stories detected as high buckling potential are summed in a linear manner while those in other stories are combined by following the SRSS(square root of sum of squares) rule. The accuracy and design advantage of the three methods were validated by comparing extensive inelastic dynamic analysis results. The mode-shape based method(MSBM), which is both simple and accurate, is recommended as the method of choice for practicing engineers among the three.

Evaluation for Mechanical Properties of High Strength Concrete at High Temperature by Stressed Test and Unstressed Test (설계하중 사전재하 및 비재하방식에 의한 고강도콘크리트의 고온특성 평가)

  • Kim, Gyu-Yong;Kim, Young-Sun;Lee, Tae-Gyu;Park, Chan-Kyu;Lee, Seung-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.583-592
    • /
    • 2008
  • Recently, the effects of high temperature on compressive strength, elastic modulus and strain at peak stress of high strength concrete were experimentally investigated. The present study is aimed to study the effect of elevated temperatures ranging from 20 to 700 on the material mechanical properties of high strength concrete of 40, 60, 80 MPa grade. In this study, the types of test were the stressed test and stressed residual test that the specimens are subjected to a 25% of ultimate compressive strength at room temperature and sustained during heating and when target temperature is reached, the specimens are loaded to failure. And another specimens are loaded to failure after 24 hour cooling time. Tests were conducted at various temperatures ($20{\sim}700^{\circ}C$) for concretes made with W/B ratios 46%, 32% and 25%. Test results showed that the relative values of compressive strength and elastic modulus decreased with increasing compressive strength grade of specimen and the axial strain at peak stress were influenced by the load before heating. Thermal strain of concrete at high temperature was affected by the preload level as well as the compressive strength. Finally, model equation for compressive strength and elastic modulus of heated high strength concrete proposed by result of this study.

An Structural Design for Cyclone Tower's Connections Using Diagrid System (다이아그리드 구조시스템의 접합부개발과 성능평가)

  • Lee, Se-Jung;Lee, Seong-Hui;Kim, Jin-Ho;Choi, Sung-Mo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.105-115
    • /
    • 2010
  • Recently, High-rise building are irregular-shaped to be city landmarks and function as vertical cities to enable the efficient use of land. 3T (Twisted, Tilted & Tapered) designs are being suggested for irregular buildings and studies to develop new structural system have been actively made to satisfy slender shape ratio. In diagrid system, not only gravity load but also lateral load is delivered based on the triangular shape of diagrid, so most of columns are eliminated. Because shearing force is delivered by the axial behavior (tensile/compressive) of diagrid to minimize shearing deformation, the system is more applicable to irregular buildings than existing system where shearing force is delivered by the columns. In this study, the process of selecting connection details and the structural safety of the selected details are verified using the finite element analysis with focus given to the construction overview of the Cyclone Tower. However, the relersed methods of stress concentration are suggested and the performance of stress concentration relieves that it's suggested for the appropriate cap plate thickness and extended length.

  • PDF