• Title/Summary/Keyword: high-arch dam

Search Result 7, Processing Time 0.022 seconds

Damage analysis of arch dam under blast loading

  • Xue, Xinhua;Yang, Xingguo;Zhang, Wohua
    • Computers and Concrete
    • /
    • v.12 no.1
    • /
    • pp.65-77
    • /
    • 2013
  • This paper examines the dynamic response of an arch dam subjected to blast loading. A damage model is developed for three dimensional analysis of arch dams. The modified Drucker-Prager criterion is adopted as the failure criteria of the damage evolution in concrete. Then, Xiluodu arch dam serves as an example to simulate the failure behaviors of structures with the proposed model. The results obtained using the proposed model can reveal the reliability degree of the safe operation level of the high arch dam system as well as the degree of potential failure, providing a reliable basis for risk assessment and risk control.

A vibration-based approach for detecting arch dam damage using RBF neural networks and Jaya algorithms

  • Ali Zar;Zahoor Hussain;Muhammad Akbar;Bassam A. Tayeh;Zhibin Lin
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.319-338
    • /
    • 2023
  • The study presents a new hybrid data-driven method by combining radial basis functions neural networks (RBF-NN) with the Jaya algorithm (JA) to provide effective structural health monitoring of arch dams. The novelty of this approach lies in that only one user-defined parameter is required and thus can increase its effectiveness and efficiency, as compared to other machine learning techniques that often require processing a large amount of training and testing model parameters and hyper-parameters, with high time-consuming. This approach seeks rapid damage detection in arch dams under dynamic conditions, to prevent potential disasters, by utilizing the RBF-NNN to seamlessly integrate the dynamic elastic modulus (DEM) and modal parameters (such as natural frequency and mode shape) as damage indicators. To determine the dynamic characteristics of the arch dam, the JA sequentially optimizes an objective function rooted in vibration-based data sets. Two case studies of hyperbolic concrete arch dams were carefully designed using finite element simulation to demonstrate the effectiveness of the RBF-NN model, in conjunction with the Jaya algorithm. The testing results demonstrated that the proposed methods could exhibit significant computational time-savings, while effectively detecting damage in arch dam structures with complex nonlinearities. Furthermore, despite training data contaminated with a high level of noise, the RBF-NN and JA fusion remained the robustness, with high accuracy.

Earthquake safety assessment of an arch dam using an anisotropic damage model for mass concrete

  • Xue, Xinhua;Yang, Xingguo
    • Computers and Concrete
    • /
    • v.13 no.5
    • /
    • pp.633-648
    • /
    • 2014
  • The seismic safety of concrete dams is one of the important problems in the engineering due to the vast socio-economic disasters which may be caused by collapse of these infrastructures. The accuracy of the risk evaluation associated with these existing dams as well as the efficient design of future dams is highly dependent on a proper understanding of their behaviour due to earthquakes. This paper develops an anisotropic damage model for arch dam under strong earthquakes. The modified Drucker-Prager criterion is adopted as the failure criteria of the dynamic damage evolution of concrete. Some process fields and other necessary information for the safety evaluation are obtained. The numerical results show that the seismic behaviour of concrete dams can be satisfactorily predicted.

An approach for deformation modulus mechanism of super-high arch dams

  • Wu, Bangbin;Niu, Jingtai;Su, Huaizhi;Yang, Meng;Wu, Zhongru;Cui, Xinbo
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.557-566
    • /
    • 2019
  • The reservoir basin bedrock produced significant impact on the long-term service safety of super-high arch dams. It was important for accurately identifying geomechanical parameters and its evolution process of reservoir basin bedrock. The deformation modulus mechanism research methods of reservoir basin bedrock deformation modulus for super-high arch dams was carried out by finite element numerical calculation of the reservoir basin bedrock deformation and in-situ monitoring data analysis. The deformation modulus inversion principle of reservoir basin bedrock in a wide range was studied. The convergence criteria for determining the calculation range of reservoir basin of super-high arch dams was put forward. The implementation method was proposed for different layers and zones of reservoir basin bedrock. A practical engineering of a super-high arch dam was taken as the example.

Vibration based damage identification of concrete arch dams by finite element model updating

  • Turker, Temel;Bayraktar, Alemdar;Sevim, Baris
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.209-220
    • /
    • 2014
  • Vibration based damage detection is very popular in the civil engineering area. Especially, special structures like dams, long-span bridges and high-rise buildings, need continues monitoring in terms of mechanical properties of material, static and dynamic behavior. It has been stated in the International Commission on Large Dams that more than half of the large concrete dams were constructed more than 50 years ago and the old dams have subjected to repeating loads such as earthquake, overflow, blast, etc.,. So, some unexpected failures may occur and catastrophic damages may be taken place because of theloss of strength, stiffness and other physical properties of concrete. Therefore, these dams need repairs provided with global damage evaluation in order to preserve structural integrity. The paper aims to show the effectiveness of the model updating method for global damage detection on a laboratory arch dam model. Ambient vibration test is used in order to determine the experimental dynamic characteristics. The initial finite element model is updated according to the experimentally determined natural frequencies and mode shapes. The web thickness is selected as updating parameter in the damage evaluation. It is observed from the study that the damage case is revealed with high accuracy and a good match is attained between the estimated and the real damage cases by model updating method.

3D Reconstruction Model of Malpasset Dam Using Close-Range Photogrammetry Technique for Geotechnical Application (근거리 사진 측량 기법을 이용한 Malpasset Dam의 3차원 재구성 모델 및 지질공학적 적용)

  • Lee, Hana
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.179-186
    • /
    • 2021
  • Malpasset Dam, located in France, is of great importance in the field of civil and geotechnical engineering as it was the first arch dam that totally collapsed in 1959. A three-dimensional model of the dam was reconstructed using close-range photogrammetry technique. The orientations of foliation developed in the bedrock and the collapse surface were measured. Moreover, both model and measurement results showed high precision. The study result can be used in future studies such as collapse simulation analysis and geotechnical investigations.

A comprehensive evaluation method study for dam safety

  • Jia, Fan;Yang, Meng;Liu, Bingrui;Wang, Jianlei;Gao, Jiaorong;Su, Huaizhi;Zhao, Erfeng
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.639-646
    • /
    • 2017
  • According to the multi-index system of dam safety assessment and the standard of safety, a comprehensive evaluation model for dam safety based on a cloud model is established to determine the basic probability assignment of the Dempster-Shafer theory. The Dempster-Shafer theory is improved to solve the high conflict problems via fusion calculation. Compared with the traditional Dempster-Shafer theory, the application is more extensive and the result is more reasonable. The uncertainty model of dam safety multi-index comprehensive evaluation is applied according to the two theories above. The rationality and feasibility of the model are verified through application to the safety evaluation of a practical arch dam.