• Title/Summary/Keyword: high-$T_c$ tunnel junction

Search Result 12, Processing Time 0.027 seconds

Microwave plasma emission from tunnel-injected nonequilibrium high-Tc superconductors

  • Lee, Kie-Jin
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.9-14
    • /
    • 2000
  • We report on the novel nonequilibrium nlicrowave emission from quasiparticle-injected high-Tc superconductors. The phenomena have been observed for the current-injected YBCO/I/Au or BSCCO/I/Au thin-film tunnel junctions and BSCCO single-crystal intrinsic Josephson mesa junction samples. For the thin-film tunnel junctions, the emitted radiation appears as broadband. For the intrinsic BSCCO mesa samples, the radiation appears as three different modes of emissions depending on the bias point in the hysteretic current-voltage characteristics; Josephson-emission, nonequilibrium broad emission and sharp coherent microwave emission. The results were interpreted by the Josephson plasma excitation model due to quasiparticle injection.

  • PDF

Andreev reflection in metal- and ferromagnet-d-wave superconductor tunnel Junction

  • Kim, Sun-Mi;Hwang, Yun-Seok;Cha, Deok-Joon;Lee, Kie-Jin
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.141-144
    • /
    • 2000
  • We report on the influence of d-wave pairing symmetry in high-T$_c$ superconductor by tunneling spectroscopy. The zerobias conductance peak(ZBCP) which is produced by tunneling through the ab-plane is observed on both of metal Au/YBa$_2$Cu$_3$O$_y$(N/S) tunnel junctions and ferromagnet Co/Au/ YBa$_2$Cu$_3$O$_y$(F/N/S) tunnel junctions. The effects of Andreev reflection on the differential conductance of each junctions are dependent on the tunnel direction. For the S/N/F junction, it appears the suppression of the ZBCP due to the suppression of Andreev reflection at the interface between a ferromagnetic material and a d-wave superconductor. By comparing these experimental results with recent theoretical works on Andreev reflection, the existence of Andreev bound state is verified in high-T$_c$ superconductor, due to the d-wave symmetry of the pair potential.

  • PDF

Tunneling Spectra in Organic Cu-Pc/$Bi_2Sr_2CaCu_2O_{8+\delta}$ Tunnel Junctions

  • Kim, Sunmi;E, Jungyoon;Lee, Kiejin;Ishbas, Takayuki;Lee, Yang-San
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.41-44
    • /
    • 2001
  • We report the current transport properties of a normal metal/organic conductor/ superconductor tunnel junction as a novel high- $T_{c}$ superconducting three terminal device. The organic copper (II) phthalocyanine (Cu-Pc) layer was used far a polaronic quasiparticle (QP) injector. The injection of polaronic QP from the Cu-Pc interlayer into a superconductor $Bi_2$$Sr_2$$CaCu_2$ $O_{8+}$ $\delta$/(BSCCO) thin film generated a substantially larger nonequilibrium effect as compared to the normal QP injection current. The tunneling spectroscopy of an Au/cu-PC/BSCCO junction exhibited a zero bias conductance peak which may be due to Andreev reflection at a Cu-Pc/d-wave superconductor junction.n..

  • PDF

Comparison of Tunneling Characteristics in the MTJs of CoFeB/MgO/CoFeB with Lower and Higher Tunneling Magnetoresistance

  • Choi, G.M.;Shin, K.H.;Seo, S.A.;Lim, W.C.;Lee, T.D.
    • Journal of Magnetics
    • /
    • v.14 no.1
    • /
    • pp.11-14
    • /
    • 2009
  • We investigated the I-V curves and differential tunneling conductance of two, CoFeB/MgO/CoFeB-based, magnetic tunnel junctions (MTJs): one with a low tunneling magnetoresistance (TMR; 22%) and the other with a high TMR (352%). This huge TMR difference was achieved by different MgO sputter conditions rather than by different annealing or deposition temperature. In addition to the TMR difference, the junction resistances were much higher in the low-TMR MTJ than in the high-TMR MTJ. The low-TMR MTJ showed a clear parabolic behavior in the dI/dV-V curve. This high resistance and parabolic behavior were well explained by the Simmons' simple barrier model. However, the tunneling properties of the high-TMR MTJ could not be explained by this model. The characteristic tunneling properties of the high-TMR MTJ were a relatively low junction resistance, a linear relation in the I-V curve, and conduction dips in the differential tunneling conductance. We explained these features by applying the coherent tunneling model.

Switching Characteristics of Magnetic Tunnel Junction with Amorphous CoFeSiB Free Layer (비정질 CoFeSiB 자유층을 갖는 자기터널접합의 스위칭 특성)

  • Hwang, J.Y.;Rhee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.276-278
    • /
    • 2006
  • The switching characteristics of magnetic tunnel junctions (MTJs) comprising amorphous ferromagnetic CoFeSiB free layer have been investigated. CoFeSiB was used for the free layer to enhance the switching characteristics. The typical junction structure was $Si/SiO_{2}/Ta$ 45/Ru 9.5/IrMn 10/CoFe $7/AlO_{x}/CoFeSiB\;(t)/Ru\;60\;(in\;nm)$. CoFeSiB has low saturation magnetization ($M_{s}$) of $560\;emu/cm^{3}$ and high anisotropy constant ($K_{u}$) of $2800\;erg/cm^{3}$. These properties caused low coercivity ($H_{c}$) and high sensitivity in MTJs, and it also confirmed in submicrometer-sized elements by micromagnetic simulation based on the Landau-Lisfschitz-Gilbert equation. By increasing CoFeSiB free layer thickness, the switching characteristics became worse due to increase of the demagnetization field.

Abnormal Temperature Dependence of Tunneling Magnetoresistance for Magnetic Tunnel Junctions

  • Lee, K.I.;Lee, J.H.;Lee, W.Y.;Rhie, K.;Lee, B.C.;Shin, K.H.
    • Journal of Magnetics
    • /
    • v.7 no.2
    • /
    • pp.59-62
    • /
    • 2002
  • Magnetic tunnel junctions (MTJs) were fabricated with high bias for plasma oxidation and the effects of annealing on the temperature dependence of tunneling magnetoresistance (TMR) were investigated experimentally. As-grown, TMR increases, peaks around 160 K, and decreases with increasing temperature from 80 K to 300 K. When MTJs are annealed, $T_{max}$, the temperature at which maximum TMR is obtained, decreases as annealing temperature increases to the optimal point. In order to explain this abnormal temperature dependence of TMR, the difference of conductance between parallel and antiparallel alignments of magnetizations as a function of temperature is also analyzed. The shifts of $T_{max}$ due to annealing process are described phenomenologically with spin-dependent transfer rates of electrons tunnel through the barrier.

Andreev Reflection in Metal- and Ferromagnet-d-wave Superconductor Tunnel Junctions

  • Kim, Sun-Mi;Lee, Kie-Jin;Hwang, Yun-Seok;Cha, Deok-Joon;Ishibashid, Takayuki
    • Progress in Superconductivity
    • /
    • v.2 no.1
    • /
    • pp.43-46
    • /
    • 2000
  • We report on the tunneling spectroscopy of tunnel junctions using d-wave superconductor in relation to Andreev reflection. The zero bias conductance peak (ZBCP) which has maximum on [110] direction of ab-plane is observed on metal $Au/YBa_2Cu_3O_y$ tunnel junctions while it is suppressed on the ferromagnetic $Co/Au/YBa_2Cu_3O_y$ tunnel junctions. The effects of Andreev reflection on the differential conductance of each junction are dependent on the tunnel direction. For the $Co/Au/YBa_2Cu_3O_y$ junction, the suppression of Andreev reflection takes place by spin-polarized quasiparticles tunneling from a ferromagnetic material to a d-wave superconductor. By comparing these experimental results with recent theoretical works on Andreev reflection, the existence of Andreev bound state due to the d-wave symmetry of the pair potential is verified in high-$T_c$ superconductor.

  • PDF

Tunneling Magnetoresistance: Physics and Applications for Magnetic Random Access Memory

  • Park, Stuart in;M. Samant;D. Monsma;L. Thomas;P. Rice;R. Scheuerlein;D. Abraham;S. Brown;J. Bucchigano
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.5-32
    • /
    • 2000
  • MRAM, High performance MRAM using MTJS demostrated, fully integrated MTJ MRAM with CMOS circuits, write time ~2.3 nsec; read time ~3 nsec, Thermally stable up to ~350 C, Switching field distibution controlled by size & shape. Magnetic Tunnel Junction Properties, Magnetoresistance: ~50% at room temperature, enhanced by thermal treatment, Negative and Positive MR by interface modification, Spin Polarization: >55% at 0.25K, Insensitive ot FM composition, Resistance $\times$ Area product, ranging from ~20 to 10$^{9}$ $\Omega$(${\mu}{\textrm}{m}$)$^{2}$, Spin valve transistor, Tunnel injected spin polarization for "hot" electrons, Decrease of MTJMR at high bias originates from anode.

  • PDF

Compositional Change of MgO Barrier and Interface in CoFeB/MgO/CoFeB Tunnel Junction after Annealing

  • Bae, J.Y.;Lim, W.C.;Kim, H.J.;Kim, D.J.;Kim, K.W.;Kim, T.W.;Lee, T.D.
    • Journal of Magnetics
    • /
    • v.11 no.1
    • /
    • pp.25-29
    • /
    • 2006
  • Recent experiments have demonstrated high TMR ratios in MTJs with the MgO barrier [1,2]. The CoFeB/MgO/CoFeB junctions showed better properties than the CoFe/MgO/CoFe junctions because the MgO layer had a good crystalline structure with (001) texture and smooth and sharp interface between CoFeB/MgO [3]. The amorphous CoFeB with 20 at%B starts the crystallization at $340^{\circ}C$ [4] and this crystallization of the CoFeB helps obtaining the high TMR ratio. In this work, the compositional changes in the MgO barrier and at the interface of CoFeB/MgO/CoFeB after the CoFeB crystallization were studied in annealed MTJs. XPS depth profiles were utilized. TEM analyses showed that the MgO barrier had (100) texture on CoFeB in the junctions. B in the bottom CoFeB layer diffused into the MgO barrier and B-oxide was formed at the interface of CoFeB/MgO/CoFeB after the CoFeB crystallization.

Tunneling effect due to UV irradiation in organic Cu-Pc/$Bi_2$$Sr_2$Ca$Cu_2$$O_{8+$\delta$}$ tunnel junction

  • Kim, Sunmi;Lee, Kiejin;Deokjoon Cha;Takayuki Ishibashi
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.99-103
    • /
    • 2003
  • We studied the nonequilibrium superconductivity due to tunnel injection of polaronic quasiparticle (QP) from organic photoconductor. The transport properties of an organic copper (II) phthalocyanine (Cu -Pc)/d-wave superconductor were investigated in dark and under ultraviolet (UV) radiation for performance of a novel $high -T_{c}$ superconducting three terminal device. We observed that the injection of polaronic QP from the organic Cu -Pc film into the $Bi_2$S $r_2$$CaCuO_{8+{\delta}}$ film generated a substantially larger nonequilibrium effect as compared to the normal QP injection current. We could increase the current gain by UV excitation of the organic photoconductor injector. The tunneling spectroscopy of a Cu -Pc/BSCCO junction exhibited a small enhancement of the zero bias conductance peak under the W excitation. The above phenomena are of importance in developing optically controlled three terminal superconducting device.e.

  • PDF