• Title/Summary/Keyword: high wave

Search Result 4,389, Processing Time 0.031 seconds

Experimental study on the alleviation of micro-pressure waves radiated from the tunnel exit with the slanted portals on the high-speed train operations of 300km/h (300km/h급 고속철도의 터널 미기압파 저감을 위한 경사갱구의 실험적 연구)

  • Kim, Dong-Hyeon;Min, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.841-846
    • /
    • 2000
  • The compression wave produced when a high-speed train enters a tunnel propagates along the tunnel ahead of the train. The micro pressure wave related to He compression wave is a special physics Phenomena created by high-speed train-tunnel interfaces. On this work, the method for reducing the micro pressure wave is to delay the gradient of the compression wave by using aerodynamic structures. The objective of this paper is to determine the optimum angle of the slanted portal using the moving model rig. According to the results of the present study, the maximum value of micro pressure wave is reduced by 19.2% fer the $45^{\circ}$ slanted portal installed at the entrance of the tunnel and reduced by 41.9% far the $45^{\circ}$ slanted portals at the entrance and exit of the tunnel. Also it is reduced by 34.6% for the $30^{\circ}$ slanted portals installed at the entrance and exit of the tunnel.

  • PDF

Evaluation of Blast Wave and Pipe Whip Effects According to High Energy Line Break Locations (고에너지배관 파단위치에 따른 배관휩과 충격파의 영향 평가)

  • Kim, Seung Hyun;Chang, Yoon-Suk;Choi, Choengryul;Kim, Won Tae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.1
    • /
    • pp.54-60
    • /
    • 2017
  • When a sudden rupture occurs in high energy lines, ejection of inner fluid with high temperature and pressure causes blast wave as well as thrust forces on the ruptured pipe itself. The present study is to examine pipe whip behaviors and blast wave phenomena under postulated pipe break conditions. In this context, typical numerical models were generated by taking a MSL (Main Steam Line) piping, a steam generator and containment building. Subsequently, numerical analyses were carried out by changing break locations; one is pipe whip analyses to assess displacements and stresses of the broken pipe due to the thrust force. The other is blast wave analyses to evaluate the broken pipe due to the blast wave by considering the pipe whip. As a result, the stress value of the steam generator increased by about 7~21% and von Mises stress of steam generator outlet nozzle exceeded the yield strength of the material. In the displacement results, rapid movement of pipe occurred at 0.1 sec due to the blast wave, and the maximum displacement increased by about 2~9%.

Numerical Study on the Effects of Pressure Wave Propagation for Tunnel Entrance Shape Change in High-Speed Railways (고속철도의 터널입구 형상변황에 따른 압력파동 현상에 관한 수치적 연구)

  • 목재균;백남욱;유재석;최윤호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.50-59
    • /
    • 1997
  • When a front head of train enters a tunnel at a high speed, compression wave is generated at tunnel entrance due to the confinement effect and propagated along the tunnel with sound of speed. The propagated compression wave is reflected at tunnel exit due to abrupt pressure change at passage. The reflected wave is expansion pressure wave. And when the rear head of train goes through the tunnel entrance, another expansion pressure wave is generated and propagated along the tunnel. The pressure drop occurs seriously around train when the two expansion pressure waves come cross on train in the tunnel. In order to reduce the pressure drop, the compression wave front must be controlled because the intensity and magnitude of pressure drop is nearly proportional to that of compression wave at tunnel entrance. This study relates to reduction of the pressure wave gradient with respect to tunnel entrance shape change with various kind of angle and rounding. The results show characteristics of wave propagation in tunnel, usefulness of characteristic curve to estimate proper time domain size in numerical study and measuring time in actual experiment. Also rounding is contributed to improve pressure wave front even if its radius is very small at tunnel entrance. In order to improve of pressure wave front at tunnel entrance, proper angle is prefered to rounding with big radius and an angle of around 14$^{\circ}$ is recommended according to this simulations, And it is expected to reduce additional pressure drop in tunnel when the location and the size of the internal space for attendant equipment are considered in advance.

  • PDF

A High Gain V-band CPW Low Noise Amplifier

  • Kang, Tae-Sin;Sul, Woo-Suk;Park, Hyun-Chang;Park, Hyung-Moo;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1137-1140
    • /
    • 2002
  • A V-band low-noise amplifiers (LNA) based on the Millimeter-wave monolithic integrated circuit (MIMIC) technology were fabricated using high performance 0.1 $\mu\textrm{m}$ $\Gamma$-shaped pseudomorphic high electron mobility transistors (PHEMT's), coplanar waveguide (CPW) structures and the integrated process for passive and active devices. The low-noise designs resulted in a two-stage MIMIC LNA with a high S$\sub$21/ gain of 14.9 dB and a good matching at 60 ㎓. 20 dBm of IP3 and 3.9 dB of minimum noise figure were also obtained from the LNA. The 2-stage LNA was designed in a chip size of 2.3 ${\times}$1.4 mm$^2$by using 70 $\mu\textrm{m}$ ${\times}$2 PHEMT’s. These results demonstrate that a good low-noise performance and simultaneously with a high gain performance is achievable with GaAs PHEMT's in the 60 ㎓ band.

  • PDF

Numerical study on the interaction between unsteady compression and unsteady expansion wave (비정상 압축파와 비정상 팽창파의 간섭에 관한 수치해석적 연구)

  • Kim, Hui-Dong;Setoguchi, Toshiaki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1413-1421
    • /
    • 1997
  • A new control method to alleviate the impulsive noise at the exit of high-speed railway tunnel was applied to the compression wave at the entrance of the tunnel. This method uses the interaction phenomenon of unsteady expansion wave and unsteady compression wave. Unsteady expansion wave was assumed to be made instantaneously by the simple theory of shock tube. Total Variation Diminishing method was employed to solve the axisymmetric unsteady compressible flow field with a specified compression wave. Numerical results show that the maximum pressure gradient of the propagating compression wave decreases with increase of the wave length of the unsteady expansion wave. It is found that the impulsive noise reduction can be obtained when the unsteady expansion wave with a large wave length is emitted just before the train enters the tunnel. The present results give the possibility to reduce the impulsive noise at the exit of tunnel.

Development of a Wave Absorbing System Using a Liquefied Sandbed

  • Kang, Yoon-Koo;Takahashi, Shigeo
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.9-16
    • /
    • 2006
  • A new wave-absorbing system, called the liquefied sandbed wave barrier (LSWB) system, is currently under development at the Port and Airport Research Institute (PARI) of Japan. The wave damping effect by the LSWB system is substantial, as confirmed by small-scale experiments and FEM numerical calculations, i.e., the wave transmission coefficient of the system is less than 0.2. Here, the results of large-scale experiments arediscussed in view of practical application. Although the LSWB system provides high wave damping, nearly equal to theoretical values, difficulty exists in obtaining a homogeneously liquefied sandbed, due to the occurrence of liquefied sandbed compaction by cyclic wave loading, which in turn, reduces excess pare pressure and the wave damping effect. These two phenomena primarily occur when the sandbed is composed of fine sand with small permeability. Based on experimental results, we propose a design method that includes countermeasures against such problems, and a prototype LSWB system is constructed in a very large wave flume at PARI. Wave damping by the prototype LSWB system is confirmed to be quite stable and high, as predicted by theoretical calculations.

Numerical Study of effects on micro-pressure wave reduction by a hood on a narrow tunnel (후드를 이용한 협소 터널 미기압파 감소 효과에 대한 수치적 연구)

  • Yun Su-Hwan;Kim Byung-Yeol;Ku Yo-Cheon;Lee Dong-ho;Kwon Hyeok-Bin;Ko Tae-hwan
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.872-877
    • /
    • 2005
  • The train entry into a tunnel generates a strong compression wave in the tunnel. The high amplitude of compression wave causes high pressure gradients that are responsible for both the aural discomfort of passengers and the impulsive acoustical wave called the miro-pressure wave. This paper provides a numerical study on effects of hood for micro'-'pressure wave reduction. An axisymmetric numerical solver, considering the cross sectional area of Korean Tilting Train eXpress, is used for a transient flow field in the tunnel. Results show that the micro-pressure wave is able to be reduced by a hood. In this results, the maximum reduction of micro--pressure wave is shown at 2L(length), 1.35D(diameter) hood around $56\%$ against the non-hood case.

  • PDF

Material property evaluation of high strength concrete using conventional and nondestructive testing method (재래 및 비파괴검사를 이용한 고강도 콘크리트의 재료특성에 관한 연구)

  • 조영상
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.629-634
    • /
    • 2001
  • This study is to characterize the material property of early age high performance concrete emphasizing compressive strength using nondestructive testing methods. Three high performance concrete slabs of 600, 850 and 1100kg/$cm^{2}$ compressive strengths were prepared together with cylinders from same batches. Cylinder tests were peformed at the ages of 7, 14, 21 and 28 days after pouring. Using the impact echo method, the compression wave velocities were obtained based on different high performance concrete ages and compressive strengths. The equation to obtain the compressive strengths of high performance concrete has been developed using the obtained compression wave velocities. Using the SASW (spectral analysis of surface wave) method, the equation have also been developed to obtain the compressive strengths of high performance concrete based on the surface wave velocities.

  • PDF

Spray Angle and Break-up Characteristics of Supersonic Liquid Jets by an Impinging Methods with High Speed Projectile (초고속 발사체의 액체 저장부 충돌에 의한 초음속 액체 제트의 분무 속도 및 분열 특성)

  • Lee, In-Chul;Shin, Jeung-Hwan;Kim, Heuy-Dong;Koo, Ja-Ye
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • Pulsed supersonic liquid jets injected into an ambient air are empirically studied by using a high pressure ballistic range system. Ballistic range systems which are configured with high-pressure tube, pump tube, launch tube and liquid storage nozzle. Experimental studies are conducted to use with various impact nozzle geometry. Supersonic liquid jets are generated by an impact of high speed of the projectile. High speed liquid jets are injected with M = 3.2 which pressure is 1.19 GPa. Multiple jets which accompany with shock wave and pressure wave in front of the jet were observed. The shock-wave affects significantly atomization process for each spray droplets. As decreasing orifice diameter, the averaged SMD of spray jets had the decreasing tendency.

Development of SRIAM Computation Module for Enhanced Calculation of Nonlinear Energy Transfer in 3rd Generation Wave Models (제3세대 파랑모델의 비선형 에너지 이송항 계산 효율 증대를 위한 SRIAM 계산모듈 개발)

  • Lee, Jooyong;Yoon, Jaeseon;Ha, Taemin
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.405-412
    • /
    • 2017
  • Because of the rapid development of computer technology in recent years, wave models can utilize parallel calculations for the high-resolution prediction of open sea and coastal areas with high accuracy. Parallel calculations also allow national agencies in the relevant sectors to produce marine forecasting data through massive parallel calculations. Meanwhile, the eastern coast of the Korean Peninsula has been increasingly damaged by swell-like high waves, and many researchers and scientists are continuing their efforts to anticipate and reduce the damage. In general, the short-term transformation of swell-like high waves can be reproduced relatively well in the third generation wave models, but the transformation of relatively long period waves needs to be simulated with higher accuracy in terms of the nonlinear wave interactions to gain a better understanding of the low-frequency wave generation and development mechanisms. In this study, we developed a calculation module to improve the calculation of the nonlinear energy transfer in the 3rd generation wave model and integrated it into the wave model to effectively consider the nonlinear wave interaction. First, the nonlinear energy transfer calculation module and third generation model were combined. Then, the combined model was used to reproduce the wave transformation due to the nonlinear interaction, and the performance of the developed operation module was verified.