• Title/Summary/Keyword: high voltage stress

Search Result 551, Processing Time 0.034 seconds

A Novel Multi-Level Type Energy Recovery Sustaining Driver for AC Plasma Display Panel (새로운 AC PDP용 멀티레벨 에너지 회수회로)

  • Hong, Soon-Chang;Jung, Woo-Chong;Kang, Kyoung-Woo;Yoo, Jong-Gul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.4
    • /
    • pp.71-78
    • /
    • 2005
  • This paper proposes a novel multi-level energy recovery sustaining driver for AC PDP(Plasma Display Panel), which solves the problems of the conventional multi-level sustaining driver. While the conventional circuit improves the voltage md current stress of the switching elements in Weber circuit not only there are parasitic resonant currents between resonant inductors and parasitic capacitance and hard switching, but also the changing period between 0 and sustain voltage is too long. Comparing the proposed circuit with the conventional circuit, the number of components are reduced and the parasitic resonant currents in resonant inductors are eliminated Moreover the hard switching problem is solved by using CIM(Current Injection Method) and the operating frequency will be high as much as possible by removing Vs/2 sustain period. And the circuit operations of the proposed circuit are analyzed for each mode and the validity is verified by the simulations using PSpice program.

Development of Novel Impact Paint Sensor by Using Graphene based Smart Nano Composite (그래핀 기반 지능형 나노복합소재를 이용한 고감도 임팩트 페인트 센서 개발 연구)

  • Kim, Sung Yong;Park, Sehoon;Choi, Gyoung Rak;Park, Hyung-Ki;Kang, Inpil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.247-252
    • /
    • 2014
  • This paper presents a novel impact sensor which can be fabricated with smart paint made of grapheme. This smart nano paint can be easily installed on structures using a spray-on technique and that can make the sensor low cost and practical. The graphene effectively improves the piezoresistivity of the smart paint and that is available to achieve sensitive impact sensor with high gauge factor. The nano smart-paint can detect sufficient impact to cover the damaged energy range of the composite around 1~3J. The voltage outputs from the sprayed paints show fairly linear responses after signal processing. The impact makes deformation of the structure and it brings change of piezoresistivity of the paint and those converts into voltage output consequently by means of a simple signal processing system. The nano smart paint is lightweight and easily applied to the structural surface, and there is no stress concentration. The nano smart paint is expected to be a cost effective and sensitive multi-functional sensor for composites and other damage monitoring applications in the field of structural health monitoring.

Investigation of Chucking Force Distribution and Variation Characteristics for the Development of ESC in OLED Deposition (OLED 증착용 정전척 개발을 위한 척킹력 분포와 변화 특성 연구)

  • Choong Hwan Lim;Dong Kyun Min;Seong Bin Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.14-20
    • /
    • 2023
  • The electrostatic chuck is a technology that uses electroadhesion to attach objects and is widely used in semiconductor and display processes. This research conducted Maxwell by varying parameters to examine the distribution and variations of chucking force in a bipolar-type ESC. The parameters that were changed include the material properties of the dielectric layer and attachment substrate, applied voltage to the electrode, and the gap and width between the electrodes. The analysis results showed that as the relative permittivity of the dielectric layer and substrate increased, the chucking force also increased, with the relative permittivity of the substrate having a greater impact on the chucking force. And increasing the applied voltage led to an increase in both the chucking force and its rate of change. Lastly, as the gap between the electrodes increased, the chucking force rapidly decreased until a certain distance, after which the decrease became less significant. On the contrary, increasing the electrode width resulted in a rapid increase in the chucking force until a certain width, beyond which the increase became less pronounced, eventually converging to a chucking force of 1700 Pa. This paper is expected to have high potential for the development and research of ESC for OLED deposition.

  • PDF

Application to Piezoelectric and Triboelectric Generators of Spongy Structured BaTiO3 Prepared by Sputtering (Sputtering에 의해 제조된 해면 구조 BaTiO3의 압전 및 마찰전기 발전기에의 응용)

  • Seon-A Kim;Sang-Shik Park
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.34-43
    • /
    • 2024
  • New piezoelectric and triboelectric materials for energy harvesting are being widely researched to reduce their processing cost and complexity and to improve their energy conversion efficiency. In this study, BaTiO3 films of various thickness were deposited on Ni foams by R.F. magnetron sputtering to study the piezoelectric and triboelectric properties of the porous spongy structure materials. Then piezoelectric nanogenerators (PENGs) were prepared with spongy structured BaTiO3 and PDMS composite. The output performance exhibited a positive dependence on the thickness of the BaTiO3 film, pushing load, and poling. The PENG output voltage and current were 4.4 V and 0.453 ㎂ at an applied stress of 120 N when poled with a 300 kV/cm electric field. The electrical properties of the fabricated PENG were stable even after 5,000 cycles of durability testing. The triboelectric nanogenerators (TENGs) were fabricated using spongy structured BaTiO3 and various polymer films as dielectrics and operated in a vertical contact separation mode. The maximum peak to peak voltage and current of the composite film-based triboelectric nanogenerator were 63.2 V and 6 ㎂, respectively. This study offers new insights into the design and fabrication of high output nanogenerators using spongy structured materials.

Development of Lightweight Piezo-composite Curved Actuator (곡면형 압전 복합재료 작동기 LIPCA 개발)

  • Park, Ki-Hoon;Yoon, Kwang-Joon;Park, Hoon-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.94-100
    • /
    • 2002
  • This paper is concerned with the development, and performance test of LIPCA (Lightweight Piezo-composite Curved Actuator) that is lighter than other conventional piezo-composite type actuators. LIPCA is composed of top fiber composite layers with a high modulus and low CTE (Coefficient of Thermal Expansion), a middle PZT cermaic wafer, and base layers with a high modulus and high CTE. The performance of each actuator was evaluated using an actuator test system consisting of an actuator supporting jig, a high voltage actuating power supplier, and a non-contact laser measuring system. The simply supported condition actuator was excited by the power supplier with 1.0Hz cycle and up to $100\sim400V_{pp}$. The displacement at the center point of actuator was measured with non-contact laser displacement measuring system, It has been shown that the LIPCA-C2 can 34% decrease in mass and 13% increase in displacement compared to THUNDER.

High Power Density and Low Cost Photovoltaic Power Conditioning System with Energy Storage System (에너지 저장장치를 갖는 고 전력밀도 및 저가격형 태양광 인버터 시스템)

  • Keum, Moon-Hwan;Jang, Du-Hee;Hong, Sung-Soo;Han, Sang-Kyoo;SaKong, Suk-Chin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.587-593
    • /
    • 2011
  • A new high power density and low cost Photovoltaic Power Conditioning System (PV PCS) with energy storage system is proposed. Its high power density and cost effectiveness can be achieved through the unification of the maximum power point tracker and battery charger/discharger. Despite of the reduced power stage, the proposed system can achieve the same performances of maximum power point tracking and battery charging/discharging as the conventional system. Moreover, the high voltage stress across the link-capacitor can be relieved through the series-connected link-capacitor with the battery. Therefore, a large number of series/parallel-connected link-capacitors can be reduced by 4-times. Especially, when the utility power failure happens, both photovoltaic and battery energies can be supplied to the load with only one power stage. Therefore, it features a simpler structure, less mass, lower cost, and fewer devices. Finally, to confirm the operation, validity, and features of the proposed system, theoretical analysis and experimental results from a single phase AC 220Vrms/1.5kW prototype are presented.

Configuration of Test Field for Introduction of IEC 60364-4-44 to Domestic System (IEC 60364-4-44의 국내 도입을 위한 실증시험장 구성)

  • Nam, Kee-Young;Choi, Sang-Bong;Jeong, Seong-Whan;Lee, Jae-Duck;Ryoo, Hee-Suk;Kim, Dae-Kyeong;Jung, Dong-Hak
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.731-732
    • /
    • 2007
  • This paper presents the final configuration of test field and test items for the application of IEC 60364-4-44 in Korea. IEC 60364-4-44 provides rules for the protection against the effects of conducted and radiated disturbances on electrical installations. Especially this standard deals with the protection of low voltage facility against the ground fault in the high voltage side of power distribution system. Many countries define the regulations on the use of electrical facilities based on their own power system and technical references which are considered to be suitable for them. The background of circuit of IEC 60364-4-44 is based on the ungrounded system as most of European countries. However, domestic electric power distribution system is based on multi-grounding system different from European system. Therefore, it is necessary to evaluate or prove the effect of the IEC 60364-4-44 for introducing and applying it to the domestic grounding system as a national standard. The authors with KEA(Korea Electric Association) carried out a project on the application of IEC 60364-4-44 to Korean electrical installations of buildings sponsored by Korean ministry of commerce, industry and energy for three years(2004.4.1$\sim$2007.3.31). The test field is established in K.E.R.I.(Korea Electrotechnology Research Institute), which is the purpose of evaluating the formula to calculate touch voltage and stress voltage in the IEC standards. This paper presents some considerations and final configuration of test field to evaluate and introduce the IEC 60364-4-44 applicable to domestic rule for the protection against ground fault.

  • PDF

Effect on the Stabilizing Heat Treatment to Weld Joint for the USC Coal Boiler Tubes(SA213 TP347H) (초초임계 석탄발전 보일러 튜브(SA213 TP347H) 용접부 안정화 열처리 효과)

  • Ahn, Jong-Seok;Park, Jin-Keun;Lee, Gil-Jae;Yoon, Jae-Yeon
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.30-36
    • /
    • 2015
  • Austenite stainless steel(SA213-TP347H) has widely been used for the superheater & reheater tube in USC(ultra-supercritica) coal boiler because of its high creep rupture strength and anti-oxidation. But recently, the short-term failures have happened frequently in heat affected zone for only 4,000~15,000hours of service. Many investigations have been conducted to understand the failure mechanism. The root cause of failure was comfirmed to "strain induce participation hardening crack" or "reheat cracking". This mechanism often occurred due to weld residual stress and precipitation of the Cr, Nb carbides in the stabilized stainless steel such as TP347H. This paper presents an analysis of failure tube and effect of the sample tubes that conducting stabilizing heat treatment in site after 11,380hours & 16,961hours of service. Visual inspection was performed. In addition, microscopic characteristics was identified by O.M, SEM, and hardness test was carried out to find out the heat treatment effects. Failures seem to happen because of being not conducted stabilizing heat treatment in site. And another cause is inadequate weld parameter such as pass, ampere, voltage, inter-pass temperature. Thus, this paper has the purpose to describe that how to prevent similar failures in those weld-joints.

A study on the nonvolatile memory characteristics of MNOS structures with double nitride layer (2층 질하막 MNOS구조의 비휘발성 기억특성에 관한 연구)

  • 이형욱
    • Electrical & Electronic Materials
    • /
    • v.9 no.8
    • /
    • pp.789-798
    • /
    • 1996
  • The double nitride layer Metal Nitride Oxide Semiconductor(MNOS) structures were fabricated by variating both gas ratio and nitride thickness, and by duplicating nitride deposited and one nitride layer MNOS structure to improve nonvolatile memory characteristics of MNOS structures by Low Pressure Chemical Vapor Deposition(LPCVD) method. The nonvolatile memory characteristics of write-in, erase, memory retention and degradation of Bias Temperature Stress(BTS) were investigated by the homemade automatic .DELTA. $V_{FB}$ measuring system. In the trap density double nitride layer structures were higher by 0.85*10$^{16}$ $m^{-2}$ than one nitride layer structure, and the AVFB with oxide field was linearly increased. However, one nitride layer structure was linearly increased and saturated above 9.07*10$^{8}$ V/m in oxide field. In the erase behavior, the hole injection from silicon instead of the trapped electron emission was observed, and also it was highly dependent upon the pulse amplitude and the pulse width. In the memory retentivity, double nitrite layer structures were superior to one nitride layer structure, and the decay rate of the trapped electron with increasing temperature was low. At increasing the number on BTS, the variance of AVFB of the double nitride layer structures was smaller than that of one nitride layer structure, and the trapped electron retention rate was high. In this paper, the double nitride layer structures were turned out to be useful in improving the nonvolatile memory characteristics.

  • PDF

DC Accelerated Aging Characteristics of $Pr_6O_{11}$ ZnO Varistors ($Pr_6O_{11}$계 ZnO 바리스터의 DC 가속열화특성)

  • 남춘우;류정선;김향숙;정영철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.808-814
    • /
    • 2001
  • The electrical properties and stabiltiy of Pr$_{6}$O$_{11}$ -based ZnO varistors, which are composed of ZnO-Pr$_{6}$O$_{11}$-Cr$_{2}$O$_{3}$-Er$_{2}$O$_{3}$ based ceramics, were investigated in the Er$_{2}$O$_{3}$ content range of 0.5 to 2.0 mol%. As Er$_{2}$O$_{3}$content is increased up to approximaterly 1.0mol%, the nonlinearity was decreased. Increasing Er$_{2}$O$_{3}$ content further caused the nonlinearity to increase. The varistors with 2.0 mol% Er$_{2}$O$_{3}$ exhibited a high nonlinearity, in which the nonlinear exponent is 47.41 and the leakage current is 1.82 $\mu$A. Furthermore, they showed a very excellent stability, in which the variation rates of the varistor voltage, the nonlinear exponent, and leakage current are -0.52%, -4.09%, and 152.75%, respectively, under DC accelerated aging stress, such as (0.80 V$_{1mA}$9$0^{\circ}C$/12h)+(0.85 V$_{1mA}$115$^{\circ}C$/12h)+(0.90 V$_{1mA}$12$0^{\circ}C$/12h)+(0.95 V$_{1mA}$1$25^{\circ}C$/12h)+(0.95 V$_{1mA}$1$25^{\circ}C$/12h).2h).TEX>/12h).2h).

  • PDF