• Title/Summary/Keyword: high uniformity

Search Result 987, Processing Time 0.025 seconds

Laborsaving Effect and Fruit Characteristics of Grape ‘Campbell Early’ According to Pedicel Thinning ('캠벨얼리' 포도의 지경솎기에 따른 작업 절감 효과 및 과실 특성)

  • Kim, Su Jin;Park, Seo Jun;Koh, Sang-Wook;Jung, Sung Min;Hur, Youn Young;Nam, Jong Cheol;Park, Kyo Sun
    • Korean Journal of Plant Resources
    • /
    • v.28 no.2
    • /
    • pp.290-295
    • /
    • 2015
  • The experiment were carried out in 7-year-old ‘Campbell Early’ grape to increase work efficiency by fruit cluster thinning methods (Pedicel and berry thinning). Pedicel thinning, such as labor-saving cluster thinning of grape, was 6.7 fold higher than the berry thinning for work efficiency. The fruit cluster weight and number of berry were lower in the fruit cluster thinning fruits than in the none-fruit cluster thinning, however, the soluble solid content (SSC) was high and titratable acidity (TA) was low in the fruit cluster thinning fruits than in the none-fruit cluster thinning fruits. Therefore, the bruising rate of berries was decreased in the fruit cluster thinning fruits. Quality uniformity by fruit cluster thinning was proper in fruit cluster weight of 350~450 g when SSC and TA in part of lower, middle and upper of cluster was considered.

Back-scattering Characteristic Analysis for SAR Calibration Site (SAR 검보정 Site 구축을 위한 후방 산란 특성 분석)

  • Lee, Taeseung;Yang, Dochul
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.305-319
    • /
    • 2021
  • The overseas calibration sites such as Mongolia used for Korea Multi-purpose Satellite (KOMPSAT-5 or K5), have a disadvantage in that maintenance and repair costs are high and immediate response is difficult when an unexpected problem occurs. Accordingly, the necessity of establishing a domestic SAR calibration site was suggested, but the progress of related research is insignificant. In this paper, we investigated what conditions should be satisfied in terms of backscattering characteristics to construct a site for SAR satellite image quality evaluation and calibration. First of all, it was selected first by applying general indicators such as accessibility and availability among places recommended as satellite image calibration candidate sitesin Korea. Next, three places, site A (Goheung-gun, Jeollanam-do), site B (Jeonju-si, Jeollabuk-do), and site C (Daedeok Research Complex, Daejeon), were selected as the final candidates because they are relatively wide and easy to install AT or CR. Site A, located in Goheung-gun, Jeollanam-do, was best considered in terms of slope measurements, minimum site area to obtain ISLR, uniformity of DN values and backscatter coefficients, interference by strong reflectors, and backscatter clutter level.

Soil Properties of Granitic Weathered Soils in the Landslide-prone Areas in Seoul (서울지역 화강암 풍화토 토층지반의 토질특성)

  • Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.29 no.1
    • /
    • pp.23-35
    • /
    • 2019
  • Landslides occur due to heavy rainfall in the summer season. Some of water may infiltrate into the ground; it causes a high saturation condition capable of causing a landslide. Soil properties are crucial in estimating slope stability and debris flow occurrence. The main study areas are Gwanaksan, Suraksan and Bukhansan (Mountain) in Seoul. A total of 44 soil samples were taken from the study area; and a series of geotechnical tests were performed. Physical and mechanical properties were obtained and compared based on region. As a result, among well-graded soils, they are classified as a clayey sand. Coarse-grained and fine-grained contents are approximately 95% and 5%, respectively, with very low amount of clay content. Density, liquid limit and dry unit weight are ranged in $2.62{\sim}2.67g/cm^3$, 27.93~38.15% and $1.092{\sim}1.814g/cm^3$. Cohesion and internal friction angle are 4 kPa and $35^{\circ}$ regardless of mountain area. Coefficient of permeability is varied between $3.07{\times}10^{-3}{\sim}4.61{\times}10^{-2}cm/sec$; it means that it results in great seepage. Permeability is inversely proportional to the uniformity coefficient and is proportional to the effective particle size. In the formal case, there was a difference by mountain area, while in the latter, the tendency was almost similar.

Measurement uncertainty analysis of radiophotoluminescent glass dosimeter reader system based on GD-352M for estimation of protection quantity

  • Kim, Jae Seok;Park, Byeong Ryong;Yoo, Jaeryong;Ha, Wi-Ho;Jang, Seongjae;Jang, Won Il;Cho, Gyu Seok;Kim, Hyun;Chang, Insu;Kim, Yong Kyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.479-485
    • /
    • 2022
  • At the Korea Institute of Radiological and Medical Sciences, physical human phantoms were developed to evaluate various radiation protection quantities, based on the mesh-type reference computational phantoms of the International Commission on Radiological Protection. The physical human phantoms were fabricated such that a radiophotoluminescent glass dosimeter (RPLGD) with a Tin filter, namely GD-352M, could be inserted into them. A Tin filter is used to eliminate the overestimated signals in low-energy photons below 100 keV. The measurement uncertainty of the RPLGD reader system based on GD-352M should be analyzed for obtaining reliable protection quantities before using it for practical applications. Generally, the measurement uncertainty of RPLGD systems without Tin filters is analyzed for quality assurance of radiotherapy units using a high-energy photon beam. However, in this study, the measurement uncertainty of GD-352M was analyzed for evaluating the protection quantities. The measurement uncertainty factors in the RPLGD include the reference irradiation, regression curve, reproducibility, uniformity, energy dependence, and angular dependence, as described by the International Organization for Standardization (ISO). These factors were calculated using the Guide to the Expression of Uncertainty in Measurement method, applying ISO/ASTM standards 51261(2013), 51707(2015), and SS-ISO 22127(2019). The measurement uncertainties of the RPLGD reader system with a coverage factor of k = 2 were calculated to be 9.26% from 0.005 to 1 Gy and 8.16% from 1 to 10 Gy. A blind test was conducted to validate the RPLGD reader system, which demonstrated that the readout doses included blind doses of 0.1, 1, 2, and 5 Gy. Overall, the En values were considered satisfactory.

A Study on the Improvement of the Electrochemical Performance of Graphite Anode by Controlling Properties of the Coating Pitch (코팅 피치의 물성제어를 통한 흑연 음극재의 전기화학 성능 향상 연구)

  • Kim, Bo Ra;Kim, Ji Hong;Kang, Seok Chang;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.459-465
    • /
    • 2022
  • A pitch coating method was proposed for the purpose of improving the electrochemical properties of natural graphite. The synthesis conditions of pitch coating were optimized via measuring electrochemical properties of pitch-coated graphite anodes. As the synthesis temperature increased, the thermal stability was improved in addition to an increase in the softening point and residual carbon weight. However, the synthesis temperature of 430 ℃ resulted in the synthesis of a large amount of NI (NMP Insoluble) due to excessive condensation reaction. As the surface uniformity and coating thickness increased due to high thermal stability, the initial coulombic efficiency and rate capability of the pitch-coated graphite were improved. However, the graphite coated with the pitch containing excessive NI showed lower electrochemical properties than the uncoated graphite. NI had low dispersibility and formed spheres after heat treatment, so it formed the heterogeneous and thicker SEI layer. The optimum conditions for forming a uniform surface and an appropriate coating layer were investigated.

Cell-cultivable ultrasonic transducer integrated on glass-coverslip (세포 배양 가능한 커버슬립형 초음파 변환자)

  • Keunhyung Lee;Jinhyoung Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.412-421
    • /
    • 2023
  • Ultrasound brain stimulation is spot-lighted by its capability of inducing brain cell activation in a localized deep brain region and ultimately treating impaired brain function while the efficiency and directivity of neural modulation are highly dependent on types of stimulus waveforms. Therefore, to optimize the types of stimulation parameters, we propose a cell-cultivable ultrasonic transducer having a series stack of a spin-coated polymer piezoelectric element (Poly-vinylidene fluoride-trifluorethylene, PVDF-TrFE) and a parylene insulating layer enhancing output acoustic pressure on a glass-coverslip which is commonly used in culturing cells. Due to the uniformity and high accuracy of stimulus waveform, tens of neuronal cell responses located on the transducer surface can be recorded simultaneously with fluorescence microscopy. By averaging the cell response traces from tens of cells, small changes to the low intensity ultrasound stimulations can be identified. In addition, the reduction of stimulus distortions made by standing wave generated from reflections between the transducers and other strong reflectors can be achieved by placing acoustic absorbers. Through the proposed ultrasound transducer, we could successfully observe the calcium responses induced by low-intensity ultrasound stimulation of 6 MHz, 0.2 MPa in astrocytes cultured on the transducer surface.

A Study on Particle and Crystal Size Analysis of Lithium Lanthanum Titanate Powder Depending on Synthesis Methods (Sol-Gel & Solid-State reaction) (분말 합성법(Sol-Gel & Solid-State reaction)에 따른 Lithium Lanthanum Titanate 분말의 입자 및 결정 크기 비교 분석에 관한 연구)

  • Jeungjai Yun;Seung-Hwan Lee;So Hyun Baek;Yongbum Kwon;Yoseb Song;Bum Sung Kim;Bin Lee;Rhokyun Kwak;Da-Woon Jeong
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.324-331
    • /
    • 2023
  • Lithium (Li) is a key resource driving the rapid growth of the electric vehicle industry globally, with demand and prices continually on the rise. To address the limited reserves of major lithium sources such as rock and brine, research is underway on seawater Li extraction using electrodialysis and Li-ion selective membranes. Lithium lanthanum titanate (LLTO), an oxide solid electrolyte for all-solid-state batteries, is a promising Li-ion selective membrane. An important factor in enhancing its performance is employing the powder synthesis process. In this study, the LLTO powder is prepared using two synthesis methods: sol-gel reaction (SGR) and solid-state reaction (SSR). Additionally, the powder size and uniformity are compared, which are indices related to membrane performance. X-ray diffraction and scanning electron microscopy are employed for determining characterization, with crystallite size analysis through the full width at half maximum parameter for the powders prepared using the two synthetic methods. The findings reveal that the powder SGR-synthesized powder exhibits smaller and more uniform characteristics (0.68 times smaller crystal size) than its SSR counterpart. This discovery lays the groundwork for optimizing the powder manufacturing process of LLTO membranes, making them more suitable for various applications, including manufacturing high-performance membranes or mass production of membranes.

Influence of Mixture Non-uniformity on Methane Explosion Characteristics in a Horizontal Duct (수평 배관의 메탄 폭발특성에 있어서 불균일성 혼합기의 영향)

  • Ou-Sup Han;Yi-Rac Choi;HyeongHk Kim;JinHo Lim
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.27-35
    • /
    • 2024
  • Fuel gases such as methane and propane are used in explosion hazardous area of domestic plants and can form non-uniform mixtures with the influence of process conditions due to leakage. The fire-explosion risk assessment using literature data measured under uniform mixtures, damage prediction can be obtained the different results from actual explosion accidents by gas leaks. An explosion characteristics such as explosion pressure and flame velocity of non-uniform gas mixtures with concentration change similar to that of facility leak were examined. The experiments were conducted in a closed 0.82 m long stainless steel duct with observation recorded by color high speed camera and piezo pressure sensor. Also we proposed the quantification method of non-uniform mixtures from a regression analysis model on the change of concentration difference with time in explosion duct. For the non-uniform condition of this study, the area of flame surface enlarged with increasing the concentration non-uniform in the flame propagation of methane and was similar to the wrinkled flame structure existing in a turbulent flame. The time to peak pressure of methane decreased as the non-uniform increased and the explosion pressure increased with increasing the non-uniform. The ranges of KG (Deflagration index) of methane with the concentration non-uniform were 1.30 to 1.58 [MPa·m/s] and the increase rate of KG was 17.7% in methane with changing from uniform to non-uniform.

Changes of Milling Quality of Rice Varieties According to the Transplanting Time and Good Resources with High Milling Quality in Yeongnam Plain Paddy (영남평야지에서 벼 이앙시기에 따른 도정특성 변화와 도정특성 유망 유전자원 탐색)

  • Kim, Choon-Song;Lee, Jong-Hee;Kwak, Do-Yeon;Jeon, Myeong-Gi;Kang, Jong-Rae;Yeo, Un-Sang;Shin, Mun-Sik;Oh, Byeong-Geun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.spc
    • /
    • pp.1-8
    • /
    • 2008
  • We carried out this study to analyze changes of rice grain milling properties according to the transplanting time and to identify genetic resources suitable for improving milling quality of rice in paddy field of Yeongnam area. We analyzed grain filling and milling quality of 30 rice varieties. In late transplanting (June 20), heading date was delayed for 6 days, compared to normal transplanting(June 5). The grain filling ratio (GFR), perfect kernel ratio of milled rice (PKR), and head rice recovery (HRR) were improved in late transplanting. There was no significant difference in head rice yield of two transplanting time, even though the milled rice yield in late transplanting was significantly smaller than that in normal transplanting because of the reduction of spikelet numbers per panicle. The uniformity of brown rice grain measured by selection sieve norm was improve in late transplanting. There was no significant difference of milling loss ratio between normal and late transplanting but there was a trend for a increase of milling necessary time in late transplanting. Thus, our result suggest that optimum transplanting time is June 10 to 15 to improve grain filling and milling quality and produce high head rice yield in the southern paddy plain of Yeongnam region. We selected promising 9 rice varieties which are Nampyeongbyeo, Ilmibyeo, Chucheongbyeo, Dongjinbyeo, Hopyeongbyeo, Malguemi, Chilbo, Hinohikari, and Cheongmu having high percentage of ripened grain and milling quality as genetic resources to improve milling characteristics of rice varieties. Chucheongbyeo, Dongjinbyeo, and Malguemi showed the highest grain filling ratio and Nampyeongbyeo had the highest perfect kernel ratio. Nampyeongbyeo and Ilmibyeo showed the highest head rice yield with more than 500 kg/10a.

Improved Device Performance Due to AlxGa1-xAs Barrier in Sub-monolayer Quantum Dot Infrared Photodetector

  • Han, Im Sik;Byun, Young-Jin;Lee, Yong Seok;Noh, Sam Kyu;Kang, Sangwoo;Kim, Jong Su;Kim, Jun Oh;Krishna, Sanjay;Ku, Zahyun;Urbas, Augustine;Lee, Sang Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.298-298
    • /
    • 2014
  • Quantum dot infrared photodetectors (QDIPs) based on Stranski-Krastanov (SK) quantum dots (QDs) have been widely explored for improved device performance using various designs of heterostructures. However, one of the biggest limitations of this approach is the "pancake" shape of the dot, with a base of 20-30 nm and a height of 4-6 nm. This limits the 3D confinement in the quantum dot and reduces the ratio of normal incidence absorption to the off-axis absorption. One of the alternative growth modes to the formation of SK QDs is a sub-monolayer (SML) deposition technique, which can achieve a much higher density, smaller size, better uniformity, and has no wetting layer as compared to the SK growth mode. Due to the advantages of SML-QDs, the SML-QDIP design has attractive features such as increased normal incidence absorption, strong in-plane quantum confinement, and narrow spectral wavelength detection as compared with SK-DWELL. In this study, we report on the improved device performance of InAs/InGaAs SML-QDIP with different composition of $Al_xGa1-_xAs$ barrier. Two SML-QDIPs (x=0.07 for sample A and x=0.20 for sample B) are grown with the 4 stacks 0.3 ML InAs. It is investigated that sample A with a confinement-enhanced (CE) $Al_{0.22}Ga_{0.78}As$ barrier had a single peak at $7.8{\mu}m$ at 77 K. However, sample B with an $Al_{0.20}Ga_{0.80}As$ barrier had three peaks at (${\sim}3.5{\mu}m$, ${\sim}5{\mu}m$, ${\sim}7{\mu}m$) due to various quantum confined transitions. The measured peak responsivities (see Fig) are ~0.45 A/W (sample A, at $7.8{\mu}m$, $V_b=-0.4V$ bias) and ~1.3 A/W (sample B, at $7{\mu}m$, $V_b=-1.5V$ bias). At 77 K, sample A and B had a detectivity of $1.2{\times}10^{11}cm.Hz^{1/2}/W$ ($V_b=-0.4V$ bias) and $5.4{\times}10^{11}cm.Hz^{1/2}/W$ ($V_b=-1.5V$ bias), respectively. It is obvious that the higher $D^*$ of sample B (than sample A) is mainly due to the low dark current and high responsivity.

  • PDF