• Title/Summary/Keyword: high uniformity

Search Result 993, Processing Time 0.032 seconds

Study on the pre-tilt level and uniformity of low rotational viscosity LC for fast response time

  • Lee, D.J.;Hwang, J.I.;Ko, T.W.;Choi, H.C.;Lee, S.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.457-459
    • /
    • 2005
  • Low viscosity LCs have been developed for fast response time improvement of the TFT-LCD Monitors based on TN mode. This low viscosity characteristic s cause the pretilt angle to be changed and the uniformity to degrade. We have studied on the pretilt angle effect by the various components used for low viscosity LCs. We prepared the panels by using these various components and measured pretilt angle for this research. As a result of this research, we have found out that each low viscosity component has the different pretilt angle level and uniformity. For good display quality, it is important to keep the stable pretilt angle. The low viscosity LCs with this stable pretilt angle make it possible to prepare the high performance TFT-LCD Monitor with both fast response time characteristics and good display quality

  • PDF

Improvement of Power Capability and Field Uniformity with Tapered Coaxial Matching Units in Strip Line for Measuring Electromagnetic Immunity of Vehicular Components

  • Chung, Yeon-Choon;Kang, Tae-Won;Park, Dong-Chul
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.5
    • /
    • pp.60-64
    • /
    • 1997
  • The design process and construction method of a strip line is described for measuring radiated susceptibility of vehicular components having electrical cables more than 2 min length. he characteristic impedance of the trip line was determined 90$\Omega$ to obtain the field uniformity of $\leq$${\pm}$3 dB in the frequency range from 100 kHz to 500 MHz. Tapered coaxial lines were used instead of the traditional lumped circuit element for the impedence matching units, therefore, the strip line has high power capability. Using these techniques, the field uniformity and power capability of a strip line could be considerably improved.

  • PDF

Analysis of Cylinder Compression Pressure Uniformity and Valve Timing by Start Motor Current and Cylinder Pressure during Cranking (기동 모터의 전류 파형과 실린더 압력 분석을 통한 기관의 압축 압력 균일도 및 밸브 개폐 시점 이상 여부 분석)

  • Kim, In-Tae;Park, Kyoung-Suk;Shim, Beom-Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.133-138
    • /
    • 2011
  • Compression pressure of individual cylinder and valve timing have big influence on combustion pressure, indicated mean effective pressure (IMEP), emission, vibration, combustion noise and many other combustion parameters. Therefore, uniformity of compression pressure and valve timing became one of most important engine design and production standard. Conventional method to evaluate compression pressure uniformity is to measure each cylinder pressure by mechanical pressure gage during cranking. This conventional method causes inaccuracy of cylinder pressure measurement because of different cranking speed results from battery status and also causes high manhour and cost. To check valve timing, related FEAD parts should be disassembled and timing mark should be checked manually. This study describes and suggests new methodology to measure compression pressure by analysis of start motor current and to check valve timing by cylinder pressure with high accuracy. With this new methodology, possibility to detect leaky cylinder and wrong valve timing was observed.

Design of the Computer Generated Holographic Diffuser (컴퓨터 생성 홀로그래픽 디퓨저의 설계)

  • Choi, Kyong-Sik;Yoon, Jin-Seon;Kim, Nam
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.5
    • /
    • pp.357-366
    • /
    • 2001
  • In this paper, computer generated holographic diffuser with high diffraction efficiency and uniformity was designed by the modified iterative Fourier transform algorithm. Newly proposed method to design a CGHD is to flip and to combine BPHs or MPHs, so it makes the computation time decreased and it makes the reconstructed signal area enlarged. The designed sixteen phase holographic diffuser had the high diffraction efficiency of 85.20%, the uniformity of 2.43%, and the average signal to noise ratio of 18.97[㏈]. Also, we compared the CGHD with a 128 level pseudo random phase diffuser about the diffraction efficiency and the uniformity. The proposed diffuser can be provided good performance for a holographic diffuser and a next-generation display device.

  • PDF

CCP and ICP Combination Impedance Matching Device for Uniformity Improvement of Semiconductor Plasma Etching System (반도체 플라즈마 식각 시스템의 균일도 향상을 위한 CCP와 ICP 결합 임피던스정합 장치)

  • Jung, Doo-Yong;Nam, Chang-Woo;Lee, Jong-Ho;Choi, Dae-Kyu;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.274-281
    • /
    • 2010
  • This paper proposes a DFPS (Dual Frequency Power Source) impedance matching device for uniformity improvement of a semiconductor plasma etching system. The DFPS consists of two parts for safe plasma processing on large-area substrates. The first part is an ICP (Inductively Coupled Plasma) for high integration by using ferrite core. The second part is a CCP (Capacitive Coupled Plasma) to control uniformity of whole cells. Proposed DFPS can achieve high productivity improvement required for semiconductor equipment industry. The proposed plasma system is analyzed, simulated and experimentally verified with a matching equipment at 27.12MHz and 400kHz.

Improvement of uniformity in chemical vapor deposition of silicon carbide using CFD (탄화규소 화학기상증착 공정에서 CFD를 이용한 균일도 향상 연구)

  • Seo, Jin-Won;Kim, Jun-Woo;Hahn, Yoon-Soo;Choi, Kyoon;Lee, Jong-Heun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.242-245
    • /
    • 2014
  • In order to increase the thickness uniformity in chemical vapor depositon of silicon carbide, we have carried out CFD studies for a CVD apparatus having a horizontally-rotated 3-stage susceptor. We deposited silicon carbide films of 3C-SiC phase showing quite uniform thickness between stages but not uniform one in the stage. The cause of this nonuniformity is thought to be originated from the high rotational speed. And the uniformity between stages can be further increased with the $120^{\circ}$ split type nozzles from CFD results. Through the formation of silicon carbide film on graphite substrates we can make oxidation-resistant and dust-free graphite components with high hardness for the semiconductor applications.

A Wide Dynamic Range NUC Algorithm for IRCS Systems

  • Cai, Li-Hua;He, Feng-Yun;Chang, Song-Tao;Li, Zhou
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1821-1826
    • /
    • 2018
  • Uniformity is a key feature of state-of-the-art infrared focal planed array (IRFPA) and infrared imaging system. Unlike traditional infrared telescope facility, a ground-based infrared radiant characteristics measurement system with an IRFPA not only provides a series of high signal-to-noise ratio (SNR) infrared image but also ensures the validity of radiant measurement data. Normally, a long integration time tends to produce a high SNR infrared image for infrared radiant characteristics radiometry system. In view of the variability of and uncertainty in the measured target's energy, the operation of switching the integration time and attenuators usually guarantees the guality of the infrared radiation measurement data obtainted during the infrared radiant characteristics radiometry process. Non-uniformity correction (NUC) coefficients in a given integration time are often applied to a specified integration time. If the integration time is switched, the SNR for the infrared imaging will degenerate rapidly. Considering the effect of the SNR for the infrared image and the infrared radiant characteristics radiometry above, we propose a-wide-dynamic-range NUC algorithm. In addition, this essasy derives and establishes the mathematical modal of the algorithm in detail. Then, we conduct verification experiments by using a ground-based MWIR(Mid-wave Infared) radiant characteristics radiometry system with an Ø400 mm aperture. The experimental results obtained using the proposed algorithm and the traditional algorithm for different integration time are compared. The statistical data shows that the average non-uniformity for the proposed algorithm decreased from 0.77% to 0.21% at 2.5 ms and from 1.33% to 0.26% at 5.5 ms. The testing results demonstrate that the usage of suggested algorithm can improve infrared imaging quality and radiation measurement accuracy.

Synthesis of Graphene Using Thermal Chemical Vapor Deposition and Application as a Grid Membrane for Transmission Electron Microscope Observation (열화학증기증착법을 이용한 그래핀의 합성 및 투과전자현미경 관찰용 그리드 멤브레인으로의 응용)

  • Lee, Byeong-Joo;Jeong, Goo-Hwan
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.130-135
    • /
    • 2012
  • We present a method of graphene synthesis with high thickness uniformity using the thermal chemical vapor deposition (TCVD) technique; we demonstrate its application to a grid supporting membrane using transmission electron microscope (TEM) observation, particularly for nanomaterials that have smaller dimensions than the pitch of commercial grid mesh. Graphene was synthesized on electron-beam-evaporated Ni catalytic thin films. Methane and hydrogen gases were used as carbon feedstock and dilution gas, respectively. The effects of synthesis temperature and flow rate of feedstock on graphene structures have been investigated. The most effective condition for large area growth synthesis and high thickness uniformity was found to be $1000^{\circ}C$ and 5 sccm of methane. Among the various applications of the synthesized graphenes, their use as a supporting membrane of a TEM grid has been demonstrated; such a grid is useful for high resolution TEM imaging of nanoscale materials because it preserves the same focal plane over the whole grid mesh. After the graphene synthesis, we were able successfully to transfer the graphenes from the Ni substrates to the TEM grid without a polymeric mediator, so that we were able to preserve the clean surface of the as-synthesized graphene. Then, a drop of carbon nanotube (CNT) suspension was deposited onto the graphene-covered TEM grid. Finally, we performed high resolution TEM observation and obtained clear image of the carbon nanotubes, which were deposited on the graphene supporting membrane.

Design and Implementation of MODA Allocation Scheme based on Analysis of Block Cleaning Cost (블록 클리닝 비용 분석에 기초한 MODA할당 정책 설계 및 구현)

  • Baek, Seung-Jae;Choi, Jong-Moo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.11
    • /
    • pp.599-609
    • /
    • 2007
  • Due to the restrictions of Flash memory such as overwrite limitation and write/erase operational unit differences, block cleaning is required in Flash memory based file systems and known as a key factor on the performance of file systems. In this paper, we identify three parameters, namely utilization, invalidity and uniformity, and analyze how the parameters affect the cost of block cleaning. The analysis show that as uniformity degrades, the cost of block cleaning increases drastically. To overcome this problem, we design a new modification-aware(MODA) page allocation scheme that strives to keep uniformity high by separating frequently-updating data from infrequently-updating data. Real implementation experiments conducted on an embedded system show that the MODA scheme can actually enhance uniformity of Flash memory, which consequently leads to reduce the cost of block cleaning with an average of 123%, compared to the traditional sequential allocation scheme that is used in YAFFS.

Study of Optimized Reflector Design for Road Light Using Ray-Tracing Method (광선추적법을 사용한 가로등 반사판의 최적설계에 관한 연구)

  • Choi, Dae-Seub;Han, Jeong-Min;Shim, Yong-Sik;Jeong, Chan-Oong;Oh, Seon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.347-350
    • /
    • 2009
  • In this study, it was studied about the improved road light design for drivers and pedestrians using forward or reverse ray-tracing method. Many of conventional road lights are not suitable for drivers and pedestrians because it has some serious problems such as glare effect or randomicity of illuminated areas. It was oriented from customary design method which was pointed at simple target such as luminance or electrical power. But it was not truth any more that the high luminance or electrical power consumption mean more bright and good road light. We studied ray-tracing method for road light reflector design to get the several goals. It means that good road light has easy for drivers and pedestrians eyes and illuminating objects on the road clearly. So, we set the design targets such as uniformity on the road area per one road light, shading angles and continuous luminance uniformity on the long distance road. We designed ideal road light conditions using ray-tracing method. We set the height of drivers and pedestrians eyes and calculated design guideline to make above design targets. Then we designed road light reflector using reverse ray-tracing method. And we achieved same luminance on the road almost half power consumption because we reduced loss of light. We achieved ideal design guide as 75 degrees of shading angles and 0.5 of luminance uniformity on the road area. It is superior than conventional road light ability such as 0.35 of luminance uniformity of 400 watts power consumption lamp. Finally, we suggested reflector design for 250 watts power consumption CDM Iight source.