• 제목/요약/키워드: high temperature wear

검색결과 495건 처리시간 0.03초

나노 Fe 분말을 이용하여 사출 성형된 Fe 소결체의 제조 (Fabrication of Injection Molded Fe Sintered Bodies Using Nano Fe Powder)

  • 김기현;임재균;최철진;이병택
    • 한국재료학회지
    • /
    • 제14권11호
    • /
    • pp.795-801
    • /
    • 2004
  • The injection molded Fe sintered bodies were fabricated using two kinds of Fe powders haying 50 nm and $3\sim5{\mu}m$ in diameter. In the using of Fe powder having 50 nm in diameter, the comparatively dense bodies ($94\sim97\%$) were obtained even at low sintering temperature ($600\sim700^{\circ}C$), while in the sintered bodies ($1000^{\circ}C$) using $3\sim5{\mu}m$ Fe powder, their relative densities showed low values about $93\%$, although they were strongly depend on the sintering temperature and volume ratio of Fe powder and binder. In the sintered bodies using of 50 nm Fe powders, the volume shrinkage and grain size increased as the sintering temperature increased, but the values of hardness decreased. In the sample sintered at $650^{\circ}C$, the values of relative density, volume shrinkage and grain size were $96\%,\;37\%\;and\;0.97{\mu}n$, respectively and the minimum value of wear depth was obtained due to combination of fine grain and comparatively high density.

자동차엔진용 금속기 복합재료의 피로균열거동에 관한 연구 (A Study on Fatigue Crack Behavior of Metal Matrix Composites for Automobile Engine)

  • 박원조;허선철;정재욱;이해우;부명환
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.140-146
    • /
    • 2003
  • Metal matrix composites had generated a lot of interest in recent time because of their high specific strength and stiffness in specific properties. It was also highlighted as the material of frontier industry because strength, heat-resistance, corrosion-resistance and wear-resistance were superiored. In this study, the strength properties of $Al_{18}B_{4}O_{33}$/AC4CH composites were represented mixing the binder of $SiO_2$. It was also fabricated by squeeze casting. $Al_{18}B_{4}O_{33}$/AC4CH was fabricated at the melt temperature of $760^{\circ}C$, the perform temperature of $700^{\circ}C$ and mold temperature of $200^{\circ}C$ under the pressure of 83.4MPa. Consequently, fatigue life was observed roughly in the order of AC4CH> nobiner> $SiO_2$, independently on crack propagation direction and stress ratio.

Ag-CdO계 전기접점재료의 미세조직에 미치는 열처리 조건과 산화 공정의 영향 (The Effect of The Heat Treatment Condition and the Oxidation Process on the Microstructure of Ag-CdO Contact Materials)

  • 권기봉;남태운
    • 한국주조공학회지
    • /
    • 제25권6호
    • /
    • pp.226-232
    • /
    • 2005
  • Contact material is widely used in the field of electrical parts. Ag-CdO material has a good wear resistance and stable contact resistance. In order to establish optimizing heat treatment condition, rolling temperature and oxidation process, we studied the microstructure of Ag-CdO material with various conditions. The experimental procedure were melting using high frequency induction, heat treatment, rolling and internal oxidation. And we experimented on difference process, Post-oxidaion. In this study, we obtained the optimizing heat treatment condition was $700^{\circ}C$ for 15 min. and the optimizing rolling temperature was $730^{\circ}C$. In investigation of the microstructure of oxidized material, coarse oxide and depleted oxidation layer existed. The hardness was average Hv 70. When we used Post-oxidation, oxides were finer than prior process and depleted oxidation layer did not exist. The hardness of Post-oxidation material was average Hv 80. And the optimizing rolling temperature was $800^{\circ}C$.

Stellite bearings for liquid Zn-/Al-Systems with advanced chemical and physical properties by Mechanical Alloying and Standard-PM-Route

  • Zoz, H.;Benz, H.U.;Huettebraeucker, K.;Furken, L.;Ren, H.;Reichardt, R.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2000년도 춘계학술강연 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.9-10
    • /
    • 2000
  • An important business-field of world-wide steel-industry is the coating of thin metal-sheets with zinc, zinc-aluminum and aluminum based materials. These products mostly go into automotive industry. in particular for the car-body. into building and construction industry as well as household appliances. Due to mass-production, the processing is done in large continuously operating plants where the mostly cold-rolled metal-strip as the substrate is handled in coils up to 40 tons unwind before and rolled up again after passing the processing plant which includes cleaning, annealing, hot-dip galvanizing / aluminizing and chemical treatment. In the liquid Zn, Zn-AI, AI-Zn and AI-Si bathes a combined action of corrosion and wear under high temperature and high stress onto the transfer components (rolls) accounts for major economic losses. Most critical here are the bearing systems of these rolls operating in the liquid system. Rolls in liquid system can not be avoided as they are needed to transfer the steel-strip into and out of the crucible. Since several years, ceramic roller bearings are tested here [1.2], however, in particular due to uncontrollable Slag-impurities within the hot bath [3], slide bearings are still expected to be of a higher potential [4]. The today's state of the art is the application of slide bearings based on Stellite\ulcorneragainst Stellite which is in general a 50-60 wt% Co-matrix with incorporated Cr- and W-carbides and other composites. Indeed Stellite is used as the bearing-material as of it's chemical properties (does not go into solution), the physical properties in particular with poor lubricating properties are not satisfying at all. To increase the Sliding behavior in the bearing system, about 0.15-0.2 wt% of lead has been added into the hot-bath in the past. Due to environmental regulations. this had to be reduced dramatically_ This together with the heavily increasing production rates expressed by increased velocity of the substrate-steel-band up to 200 m/min and increased tractate power up to 10 tons in modern plants. leads to life times of the bearings of a few up to several days only. To improve this situation. the Mechanical Alloying (MA) TeChnique [5.6.7.8] is used to prOduce advanced Stellite-based bearing materials. A lubricating phase is introduced into Stellite-powder-material by MA, the composite-powder-particles are coated by High Energy Milling (HEM) in order to produce bearing-bushes of approximately 12 kg by Sintering, Liquid Phase Sintering (LPS) and Hot Isostatic Pressing (HIP). The chemical and physical behavior of samples as well as the bearing systems in the hot galvanizing / aluminizing plant are discussed. DependenCies like lubricant material and composite, LPS-binder and composite, particle shape and PM-route with respect to achievable density. (temperature--) shock-reSistibility and corrosive-wear behavior will be described. The materials are characterized by particle size analysis (laser diffraction), scanning electron microscopy and X-ray diffraction. corrosive-wear behavior is determined using a special cylinder-in-bush apparatus (CIBA) as well as field-test in real production condition. Part I of this work describes the initial testing phase where different sample materials are produced, characterized, consolidated and tested in the CIBA under a common AI-Zn-system. The results are discussed and the material-system for the large components to be produced for the field test in real production condition is decided. Outlook: Part II of this work will describe the field test in a hot-dip-galvanizing/aluminizing plant of the mechanically alloyed bearing bushes under aluminum-rich liquid metal. Alter testing, the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed. Part III of this project will describe a second initial testing phase where the won results of part 1+11 will be transferred to the AI-Si system. Part IV of this project will describe the field test in a hot-dip-aluminizing plant of the mechanically alloyed bearing bushes under aluminum liquid metal. After testing. the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed.

  • PDF

크로마이징 처리 된 철계 소결 부품의 내식성 및 저 마찰특성 (Corrosion Resistance and Low Friction Property of Sintered Steel Parts via Chromizing Treatment)

  • 김상권;박용진;여국현;이재훈
    • 대한금속재료학회지
    • /
    • 제50권11호
    • /
    • pp.809-815
    • /
    • 2012
  • Recently, as the interest in improving energy efficiency has grown, the demand for vehicle and machine parts that are resistant in high temperature corrosive conditions and abrasive environments has increased. Pack chromizing treatment of sintered steels is a profitable method that satisfies both corrosion resistance and low friction properties. Since austenitic stainless steels have good corrosion resistance but low mechanical hardness, if they are replaced by sintered steel parts with pack chromizing treatment, all the desirable properties such as low price, easy molding, high hardness, low frictional coefficient, and high corrosion resistance, can be obtained. The higher corrosion resistance of the chromized parts over that of the austenitic stainless steels was acquired by coating chromium carbides and a thin chromium oxides layer on the surface. Moreover, the surface morphology of chromized parts, which were composed of chromium rich phases and hardened chromium carbides by diffusing and alloying, had a peak-and-valley shape so that the dimple effect by the wrinkled morphology and high hardness induced a low friction coefficient.

여름철 셀룰로오스 섬유 의복의 착용감에 관한 연구 (A Study on the Wear Sensation Cellulose Fabric in Summer)

  • 권수애;이순원
    • 한국의류학회지
    • /
    • 제12권1호
    • /
    • pp.81-91
    • /
    • 1988
  • The purpose of this study is to investigate the physiolosical responses and subjective wear sensation to the clothes with different cellulose composition. The experimental garments were four types of cellulosic fabrics, respectively composed of $100\%$-cotton, $100\%$-Rayon, cotton/Flax 85/15, and rayon/Flax 85/15 (weft blended), were sewn in blouses with half-length sleeves. Four healthy women were chosen for this experiment. The condition of the experimental room were in two environments: Temp., $25{\pm}1^{\circ}C$, R.H. $60{\pm}3\%$ and Temp., $30{\pm}1^{\circ}C$, R.H. $70{\pm}3\%$, and air velocity was maintained at 0.25 m/sec. The results are as follows. 1) At $25^{\circ}C$, rayon blouse showed the pleasantest feeling because of its excellent humidity sensation and tactile sensation. At $30^{\circ}C$, rayon and flax blended blouse showed most comportable sensation. In both environments, blouse of $100\%$ cotton showed the least pleasant because of high vapor pressure inside the blouse and bad tactile sensation. 2) Vapor pressure inside the blouse and tactile sensation play the most impotant role in comfort. Consequantly the blouse made of $100\%$-cotton which bring low air permeability, moisture regain and water vapor permearbility showed more unpleastness than rayon blouse because it raises temperature, relative humidity and vapor pressure inside the blouse under the hot circumstances In the conditions with much sweat, rayon and flax blended blouse with high stiffness increases comfort better than $100\%$ rayon because the former prevents sticking to the skin.

  • PDF

Microstructure and Mechanical Properties of β-SiAlON Ceramics Fabricated Using Self-Propagating High-Temperature Synthesized β-SiAlON Powder

  • Kim, Min-Sung;Go, Shin-Il;Kim, Jin-Myung;Park, Young-Jo;Kim, Ha-Neul;Ko, Jae-Woong;Yun, Jon-Do
    • 한국세라믹학회지
    • /
    • 제54권4호
    • /
    • pp.292-297
    • /
    • 2017
  • ${\beta}-SiAlON$, based on its high fracture toughness, good strength and low abrasion resistance, has been adopted in several industrial fields such as bearings, turbine blades and non-ferrous metal refractories. In general, ${\beta}-SiAlON$ is fabricated by reactive sintering using expensive $Si_3N_4$ and AlN as starting materials. On the other hand, in this study, a cheaper ${\beta}-SiAlON$ starting powder synthesized by SHS was employed to improve price competitiveness compared to that of the reactive sintering process. ${\beta}-SiAlON$ ceramics with various content of the sintering additive $Y_2O_3$ up to 7 wt% were fabricated by conventional pressureless sintering at $1800^{\circ}C$ for 2 to 8 h under $N_2$ pressure of 0.1 MPa. The specimen with 3 wt% $Y_2O_3$ exhibited the best mechanical properties: hardness of 14 GPa, biaxial strength of 830 MPa, fracture toughness of $5MPa{\cdot}m^{1/2}$ and wear rate of about $3{\times}10^{-6}mm^3/N{\cdot}m$.

Effects of Gas Flow Ratio on the Properties of Tool Steel Treated by a Direct Current Flasma Nitriding Process

  • Jang H. K.;Whang C. N.;Kim S. G.;Yu B. G.
    • 한국표면공학회지
    • /
    • 제38권5호
    • /
    • pp.202-206
    • /
    • 2005
  • Nitriding treatments were conducted on tool steel (SKD 61) at a temperature of $500^{\circ}C$ for 5 hr using high vacuum direct current (DC) plasma, with ammonia and argon as source gases. The structural and compositional changes produced in the nitrided layers by applying different ratios of Ar to $NH_{3}\;(n_{Ar}/n_{NH3}) were investigated using glancing x-ray diffraction (GXRD), optical microscopy, atomic force microscopy (AFM), micro-Vickers hardness testing, and pin-on-disc type tribometer. Nitriding case depths of around of $50{\mu}m$ were produced, varying slightly with different ratios of $n_{Ar}/n_{NH3}. It was found that the specimen surface hardness was 1150 Hv with $n_{Ar}/n_{NH3}=1, increasing to a maximum value of 1500 Hv with $n_{Ar}/n_{NH3}=5. With a further increase in ratio to $n_{Ar}/n_{NH3}=10, the surface hardness of the specimen reduced slightly to a value of 1370 Hv. These phenomena were caused by changes of the crystallographic structure of the nitride layers, i.e the $\gamma'-Fe_{4}N$ phase only was observed in the sample treated with $n_{Ar}/n_{NH3}$=1, and the intensity of the $\gamma'-Fe_{4}N$ phase were reduced but new phase of $\varepsilon'-Fe_{3}N$, which was known as a high hardness, with increasing $n_{Ar}/n_{NH3}. Also, the relative weight loss of counterface of the pin-on-disc with unnitrided steel was 0.2. And that of nitrided steel at a gas mixture ($n_{Ar}/n_{NH3}) of 1, 5, 7, and 10 was 0.4, 0.7, 0.6, and 0.5 mg, respectively. This means that the wear resistance of the nitrided samples could be increased by a factor of 2 at least than that of unnitrided steel.

여고생 통학복의 착용감과 생리반응에 관한 연구 (The Wearing Sensation and Physiological Responses in School Wear in the High School Girl's)

  • 권수애
    • 한국생활과학회지
    • /
    • 제7권2호
    • /
    • pp.81-91
    • /
    • 1998
  • The subjects in this research were 368 girls in high school for survey, and wearing sensation and physiological responses were investigated through wearing trials on human body in climatic chamber based on these results from the survey. The results are as follows : 1. They enjoyed wearing t-shirts, jackets, vests, and blouses in order for the upper clothes, and they preferred t-shirts to blouses. For the lower clothes, they enjoyed slacks much more than skirts. The weight of clothes was significantly heavier in the group where they wore the uniforms(U-group) than in the group where they wore the free styles(F-group). When they chose the school wear, activity was the most important of all, and the maintenance was the least. 2. As the classes were a little cool and dry, most of them dissatisfied the environment. The degree of the satisfaction of the class environment and properties to it were higher in the U-group than in F-group. 3. In the textiles, colors, styles, activity, static electricity, seasonal property, and easiness of putting on and taking off the clothes, F-group was more satisfied than U-group. U-group was more satisfied than F-group in the soil of the clothes. 4. The thermal comfort, thickness, and tightness of the clothes were not significantly different between the groups. The clothes of U-group was heavier than those of F-group, and the tactile sensation in U-group was worse than F-group. In U-group the students felt the skirts very inconvenient when they acted. 5. The weight of the clothes influenced the wearing sensation, therefore the heavier the clothes were the less satisfied they felt. 6. The inside temperature of clothes was significantly higher in U-group than in F-group. The skin temperatures of abdomen and arm were significantly higher in U-group than in F-group, while the skin temperatures of thighs and legs were significantly lower in U-group than in F-group. U-group felt heavier than F-group in wearing the clothes. Therefore the improvement of the clothes weight is needed.

  • PDF

Industrial application of WC-TiAlN nanocomposite films synthesized by cathodic arc ion plating system on PCB drill

  • Lee, Ho. Y.;Kyung. H. Nam;Joo. S. Yoon;Jeon. G. Han;Young. H. Jun
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2001년도 춘계학술발표회 초록집
    • /
    • pp.3-3
    • /
    • 2001
  • Recently TiN, TiAlN, CrN hardcoatings have adapted many industrial application such as die, mold and cutting tools because of good wear resistant and thermal stability. However, in terms of high speed process, general hard coatings have been limited by oxidation and thermal hardness drop. Especially in the case of PCB drill, high speed cutting and without lubricant process condition have not adapted these coatings until now. Therefore more recently, superhard nanocomposite coating which have superhard and good thermal stability have developed. In previous works, WC-TiAlN new nanocomposite film was investigated by cathodic arc ion plating system. Control of AI concentration, WC-TiAlN multi layer composite coating with controlled microstructure was carried out and provides additional enhancement of mechanical properties as well as oxidation resistance at elevated temperature. It is noted that microhardness ofWC-TiA1N multi layer composite coating increased up to 50 Gpa and got thermal stability about $900^{\circ}C$. In this study WC-TiAlN nanocomposite coating was deposited on PCB drill for enhancement of life time. The parameter was A1 concentration and plasma cleaning time for edge sharpness maintaining. The characteristic of WC-TiAlN film formation and wear behaviors are discussed with data from AlES, XRD, EDS and SEM analysis. Through field test, enhancement of life time for PCB drill was measured.

  • PDF