• Title/Summary/Keyword: high temperature superconducting

Search Result 787, Processing Time 0.023 seconds

Performance analysis of a 746 W HTS generator equipped with 70 A class contactless superconducting field exciter

  • Chae, Yoon Seok;Kim, Ho Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.3
    • /
    • pp.1-6
    • /
    • 2020
  • This paper presents the analysis results on the electrical output performance characteristics of a 746 W high temperature superconducting generator (HTSG). The HTS field winding is charged by non-contact excitation method, i.e., contactless superconducting field exciter (CSFE) which is originated by rotary flux pump based on permanent magnet. In this paper, the preliminary current charging test was carried out using a 70 A CSFE to evaluate the performance of field exciter and analyze its non-contact excitation characteristics for the full-scale HTS field winding of the 746 W HTSG. First, the various contactless current-charging tests were conducted using assembly with HTS field winding and CSFE. Then, in order to estimate the output power performance characteristics of the 746 W HTSG, finite element analysis was conducted based on field excitation information which is experimentally measured under various operating conditions. Finally, the electrical output characteristics in no-load and load models were simulated by two-dimensional transient solver in ANSYS electromagnetics 19.0 release.

Development of the Wireless Technique for Health Monitoring of Superconducting Motor (초전도 모터의 상태진단을 위한 데이터 신호 무선처리 기법개발)

  • Seo, K.C.;Lee, M.R.;Lee, J.H.;Kwon, Y.K.;Shon, M.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.829-834
    • /
    • 2004
  • This research is to development advanced health(condition) monitoring system of superconducting motors. Development of advanced condition monitoring systems offers the prospect of improved performance, assessment, and operation, simplified design, enhanced safety, and reduced overall cost of advanced and next generation superconducting motor. For advanced and next generation superconducting motor design, the opportunity exists to develop and implement real-time and continuous monitoring systems by integrating wireless and computational technique. Generally, condition monitoring and control of temperature is essential for managing the superconducting motor components, rotor and structures. In this research, development of advanced monitoring in low temperature and high speed operating environments offers the potential to greatly improve the control of harsh environments. In conventional method, slip rings have been used to acquire data from these sensors. However, the increase of sensors leads to vibration of the rotation axis and noise signals due to kinematics contact. In this study, the wireless data acquisition technique was employed to develop more stable monitoring system adequate for high speed rotating system.

  • PDF

Characteristics of Sub-cooled Nitrogen Cryogenic System for Applied High-Tc Superconducting Devices (고온초전도 응용기기용 과냉질소 냉각시스템의 냉각특성)

  • 강형구;김형진;배덕권;안민철;윤용수;장호명;고태국
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.1
    • /
    • pp.38-42
    • /
    • 2004
  • The cryogenic system for 6.6 kV/200 A inductive superconducting fault current limiter (SFCL) was developed at Yonsei university in 2003. The sub-cooled nitrogen cryogenic system could be applied to not only SFCL but also many other applied high-Tc superconducting (HTS) devices like superconducting motor, superconducting generator and superconducting magnetic energy storage (SMES). Generally, the cooling capacity of GM-cryocooler depends on the load temperature. Therefore it is necessary to perform the cooling capacity test at no load condition to calculate the exact cooling power and heat load of cryogenic system. In this research, the cooling capacity test of GM-cryocooler was executed and the heat load of developed cryogenic system was calculated. The long run operation test results of sub-cooled nitrogen cryogenic system were successful in pressure and temperature condition. Moreover, the design and fabrication method of cryogenic system were introduced and the test results were described.

Design of Water-cooled 1MW HTS Synchronous Motor (수냉식 1MW 고온초전도 동기모터의 설계)

  • Baik Seung-Kyu;Sohn Myung-Hwan;Lee Eun-Yong;Kwon Young-Kil;Moon Tae-Sun;Park Heui-Joo;Kim Yeong-Chun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.3
    • /
    • pp.21-28
    • /
    • 2005
  • Superconducting synchronous motors and generators have the field coil composed of superconductor with almost zero resistance at superconducting state. Therefore, copper loss at the conventional field coil is eliminated and the superconducting machine gets higher efficiency. The armature coil of the superconducting machine is composed of copper wire and supported by non-magnetic material such as FRP (Fiber Reinforced Plastic) This paper contains the design Procedure of a 1MW superconducting synchronous motor using high-temperature superconductor only for the field coil. Especially, the armature coil is designed by water-cooling in order to dissipate Joule heat easily. Moreover, 3-dimensional electromagnetic design is conducted to get a proper design result and reduce design errors from 2-dimensional approach.

The progresses of superconducting technology for power grid last decade in China

  • Xiao, Liye;Gu, Hongwei
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • With the increasing development of renewable energy, it is expected that large-scale renewable power would be transported from the west and north area of China to the east and south area. For this reason, it will be necessary to develop a wide-area power grid in which the renewable energy would be the dominant power source, and the power grid will be faced by some critical challenges such as long-distance large-capacity power transmission, the stability of the wide-area power grid and the land use problem for the power grid. The superconducting technology for power (STP) would be a possible alternative for the development of China's future power grid. In last decade, STP has been extensively developed in China. In this paper, we present an overview of the R&D of STP last decade in China including: 1) the development of high temperature superconducting (HTS) materials, 2) DC power cables, 3) superconducting power substations, 4) fault current limiters and 5) superconducting magnetic energy storage (SMES).

High Temperature Superconducting Pseudo-Lumped Element Bandpass Filter

  • Min, Byoung-Chul;Choi, Young-Hwan;Kim, Hong-Teuk;Moon, Seung-Hyun;Lee, Seung-Min;Oh, Byung-Du
    • Progress in Superconductivity
    • /
    • v.1 no.1
    • /
    • pp.42-46
    • /
    • 1999
  • A high-temperature superconducting 1.78 GHz bandpass filter, designed for PCS applications, is presented. The structure consists of microstrip pseudo-lumped elements, which enables miniaturization of the filter. A 5-pole microstrip filter could be realized on a 37 mm $\times$ 9 mm $LaAlO_3$ substrate, using double-sided high-temperature superconducting $YBa_2Cu_3O{7-\delta}$ thin film. This filter showed 0.7 % fractional bandwidth, 0.3 dB insertion loss, and 12 dB return loss in the passband at 60 K.

  • PDF

The Basic Insulation Design of 60 kV Bushing for Netural Line of 154 kV Class HTS Transformer (154 kV급 고온초전도 변압기의 중성선용 60 kV 부싱의 기초 절연설계)

  • Choi, Jae-Hyeong;Choi, Jin-Wook;Kim, Sang-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.3
    • /
    • pp.32-35
    • /
    • 2008
  • A common problem in many fields of cryogenic power engineering is applying high voltage to cold parts of superconducting apparatus. In many cases, a bushing provides electrical insulation for the conductor which makes the transition from ambient temperature to the cold environment. The 60 kV class cryogenic high voltage bushing for neutral line of the 154 kV / 100MVA high temperature superconducting (HTS) transformer was described. The bushing is energized with the line-to-ground voltage between the coaxial center and outer surrounding conductors; in the axial direction, there was a temperature difference from ambient to about 77 K. For the insulation design of cryogenic bushing, electrical insulation characteristics of the GFRP were discussed in this paper.

Electrical Insulation Characteristics at Cryogenic Temperature for High Temperature Superconducting Cables

  • Okubo, Hitoshi;Hayakawa, Naoki
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.1
    • /
    • pp.15-20
    • /
    • 2004
  • This paper discusses electrical insulation characteristics at cryogenic temperature, especially focusing on partial discharge (PD) inception characteristics, for high temperature superconducting cables. In liquid nitrogen (L$N_2$) / polypropylene (PP) laminated paper composite insulation system, PD inception strength (PDIE) was evaluated in terms of volume effect and V-t characteristics. Different kinds of butt gap condition were applied in the experiments, using parallel plane and coaxial cylindrical cable samples. Experimental results revealed that the volume effect on PDIE could be evaluated by the statistical stressed liquid volume (SSLV) taking account the discharge probability not only in the butt gap but also in the other thin layers between PP laminated papers. Furthermore, the indices n of V-t characteristics at PD inception were estimated to be 80∼110, irrespective of the butt gap condition.

Conceptual Design of Single Phase 10MVA HTS Transformer (단상 10MVA 고온초전도 변압기 개념설계)

  • 석복렬;최명준
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.42-46
    • /
    • 2002
  • This research is conducted with the object of Piling up the foundation of design technologies for high temperature superconducting (HTS) power transformer which is thought to be as a powerful power transformer of next generation. In this study, not only the theoretical design of high temperature superconducting (HTS) transformer but also the arrangements of superconducting tape and the cooling method have been conducted. Moreover, electromagnetic analyses using finite element method (FEM) were conducted to confirm the efficiency of the designed transformer.