• 제목/요약/키워드: high temperature reactors

검색결과 206건 처리시간 0.028초

A Study on the Effects of Salinity and Washing in on Aerobic Composting of Food Wastes

  • Park, Seok-Hwan
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2004년도 International Conference Global Environmental Problems and their Health Consequences
    • /
    • pp.207-209
    • /
    • 2004
  • This study was performed to estimate the effects of salinity and washing of food wastes on temperature, pH, and salinity in aerobic composting of food wastes. Weight ratios of food wastes to water in washing were 1:0(Control), 1:1(W-1), 1:2(W-2), 1:3(W-3) and 1:4(W-4), respectively. Ratios of food wastes to wood chips in reactor of Control, W-1, W-2, W-3 and W-4 were 5kg:5L, respectively. Reactors were operated for 24 days with 1 hour stirring by 1 rpm and 2 hours aeration per day. The increase in the ratio of food wastes to water used in washing resulted in the decrease of the highest reaction temperature and the elongation of the high temperature reaction period. The lowering of the ratio of food wastes to water used in washing resulted in faster pH increase The final salinities of Control, W-1, W-2, W-3 and W-4 were 0.95%, 0.73%, 0.65%, 0.57% and 0.41%, respectively.

  • PDF

음식물쓰레기의 세척이 호기성 퇴비화에 미치는 영향 (Effects of Washing of Food Wastes on Aerobic Composting)

  • 박석환
    • 한국환경보건학회지
    • /
    • 제30권1호
    • /
    • pp.1-6
    • /
    • 2004
  • This study was performed to estimate the effects of washing of food wastes on temperature, pH, weight and volume reduction and salinity in aerobic composting of food wastes. Weight ratios of food wastes to water in washing were 1:0(Control), 1:1 (W-1), 1:2(W-2), 1:3(W-3) and :4(W-4), respectively. Ratios of food wastes to wood chips in reactor of Control, W-1, W-2, W-3 and W-4 were 5 kg:5 1, respectively. Reactors were operated for 24 days with 1 hour stirring by 1 rpm and 2 hours aeration per day. The increase in the ratio of food wastes to water used in washing resulted in the decrease of the highest reaction temperature and the elongation of the high temperature reaction period. The lowering of the ratio of food wastes to water used in washing resulted in faster pH increase and the steady state in the weight reduction rate and the volume reduction rate of composts. The final salinities of Control, W-1, W-2, W-3 and W-4 were 0.95%, 0.73%, 0.65%, 0.57% and 0.41%, respectively.

슬러지를 이용한 유기산 발효공정의 외부 탄소원으로 활용 (Utilization as External Carbon Source of TVFAs Fermentation with Sludge)

  • 김영규;김인배;김민호
    • 한국환경보건학회지
    • /
    • 제27권4호
    • /
    • pp.79-83
    • /
    • 2001
  • The sludge wastes fermentation process reactors were operated to produce the VFAs(volatile fatty acids) as supplemental carbon sources and to determine the optimum operating conditions. The experiment was carried out by varied mixture ration of 400:0 350:30 300:100 200:200 and operating temperature 2$0^{\circ}C$ 3$0^{\circ}C$ and 4$0^{\circ}C$ The results were as follows: Higher VFAs production rate observed at higher mixed ratio of primary sludge. When the mixed ratio of primary sludge and return sludge were 400:0 350:50 300:100 200:200 respectively. VFAs production are were 829.6mg/l 944.2 mg/l 597.9mg/ml an d441.6 mg/l , respectively. the yield of VFAs increased with temperature, but decreased with initial TSS concentration Because fermented sludge has relatively low nitrogen and phosphorus and relatively high VFAs it can be used as a substitute for external carbon in biological nutrient removal process.

  • PDF

Metal Hydride Chemical Heat Pump의 최적 작동조건에 관한 연구 (Optimum Operating Conditions of Metal Hydride Chemical Heat Pump)

  • 권기원;이재영
    • 한국수소및신에너지학회논문집
    • /
    • 제1권1호
    • /
    • pp.24-30
    • /
    • 1989
  • Prototype metal hydride chemical heat pump was constructed using $LaNi_{4.7}Al_{0.3}$ for high temperature hydride and $MmNi_{4.15}Fe_{0.65}Al_{0.2}$ for low temperature hydride, and the effects of operating conditions on the performace of heat pump were investigaed to find out the optimum operating condition. Operating variables considered in this work were cycling time, temperature of hot air blown to the high temperature reactor, the amount of hydrogen gas with which the system was charged initially, and the flow rate of air at both reactors. Power of heat pump increases monotonically as $T_h$ increases, and shows maxima at 4.8H/M and 15-25 min in $H_2$ charged and cycling time respectively. Power of heat pump increases as air flow rate increases at low flow rate, but saturates to some value confined by heat flow rate through the hydride bed, These all phenomena can be explained by the modified power equation.

  • PDF

SRT와 온도 변화를 통한 돈사폐수 내 고농도 암모니아의 아질산화 평가 (Evaluation of Nitritation of High Strength Ammonia with Variation of SRT and Temperature using Piggery Wastewater)

  • 임지열;길경익
    • 한국물환경학회지
    • /
    • 제27권5호
    • /
    • pp.563-571
    • /
    • 2011
  • The purpose of this study is to investigate the high strength ammonia oxidation of piggery wastewater. Laboratory scale reactors was operated using influent of piggery wastewater and effluent of anaerobic digester from piggery wastewater at $35^{\circ}C$ and $20^{\circ}C$. Results of various operating conditions were compared and analyzed. After analyzing the results, effluent of anaerobic digester from piggery wastewater required shorter Solid retention time (SRT) than influent of piggery wastewater. In terms of the temperature, stable ammonia removal and denitrification was achieved on the both of the condition. At the temperature of $35^{\circ}C$, nitrite conversion rate was better than $20^{\circ}C$. It can be concluded that treating the piggery wastewater using anaerobic digester on the condition of the temperature at $35^{\circ}C$ is more efficient on the nitritation of the piggery wastewater.

Prismatic-core advanced high temperature reactor and thermal energy storage coupled system - A preliminary design

  • Alameri, Saeed A.;King, Jeffrey C.;Alkaabi, Ahmed K.;Addad, Yacine
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.248-257
    • /
    • 2020
  • This study presents an initial design for a novel system consisting in a coupled nuclear reactor and a phase change material-based thermal energy storage (TES) component, which acts as a buffer and regulator of heat transfer between the primary and secondary loops. The goal of this concept is to enhance the capacity factor of nuclear power plants (NPPs) in the case of high integration of renewable energy sources into the electric grid. Hence, this system could support in elevating the economics of NPPs in current competitive markets, especially with subsidized solar and wind energy sources, and relatively low oil and gas prices. Furthermore, utilizing a prismatic-core advanced high temperature reactor (PAHTR) cooled by a molten salt with a high melting point, have the potential in increasing the system efficiency due to its high operating temperature, and providing the baseline requirements for coupling other process heat applications. The present research studies the neutronics and thermal hydraulics (TH) of the PAHTR as well as TH calculations for the TES which consists of 300 blocks with a total heat storage capacity of 150 MWd. SERPENT Monte Carlo and MCNP5 codes carried out the neutronics analysis of the PAHTR which is sized to have a 5-year refueling cycle and rated power of 300 MWth. The PAHTR has 10 metric tons of heavy metal with 19.75 wt% enriched UO2 TRISO fuel, a hot clean excess reactivity and shutdown margin of $33.70 and -$115.68; respectively, negative temperature feedback coefficients, and an axial flux peaking factor of 1.68. Star-CCM + code predicted the correct convective heat transfer coefficient variations for both the reactor and the storage. TH analysis results show that the flow in the primary loop (in the reactor and TES) remains in the developing mixed convection regime while it reaches a fully developed flow in the secondary loop.

A DYNAMIC SIMULATION OF THE SULFURIC ACID DECOMPOSITION PROCESS IN A SULFUR-IODINE NUCLEAR HYDROGEN PRODUCTION PLANT

  • Shin, Young-Joon;Chang, Ji-Woon;Kim, Ji-Hwan;Park, Byung-Heung;Lee, Ki-Young;Lee, Won-Jae;Chang, Jong-Hwa
    • Nuclear Engineering and Technology
    • /
    • 제41권6호
    • /
    • pp.831-840
    • /
    • 2009
  • In order to evaluate the start-up behavior and to identify, through abnormal operation occurrences, the transient behaviors of the Sulfur Iodine(SI) process, which is a nuclear hydrogen process that is coupled to a Very High Temperature Gas Cooled Reactor (VHTR) through an Intermediate Heat Exchanger (IHX), a dynamic simulation of the process is necessary. Perturbation of the flow rate or temperature in the inlet streams may result in various transient states. An understanding of the dynamic behavior due to these factors is able to support the conceptual design of the secondary helium loop system associated with a hydrogen production plant. Based on the mass and energy balance sheets of an electrodialysis-embedded SI process equivalent to a 200 $MW_{th}$ VHTR and a considerable thermal pathway between the SI process and the VHTR system, a dynamic simulation of the SI process was carried out for a sulfuric acid decomposition process (Second Section) that is composed of a sulfuric acid vaporizer, a sulfuric acid decomposer, and a sulfur trioxide decomposer. The dynamic behaviors of these integrated reactors according to several anticipated scenarios are evaluated and the dominant and mild factors are observed. As for the results of the simulation, all the reactors in the sulfuric acid decomposition process approach a steady state at the same time. Temperature control of the inlet helium is strictly required rather than the flow rate control of the inlet helium to keep the steady state condition in the Second Section. On the other hand, it was revealed that the changes of the inlet helium operation conditions make a great impact on the performances of $SO_3$ and $H_2SO_4$ decomposers, but no effect on the performance of the $H_2SO_4$ vaporizer.

Numerical study of the flow and heat transfer characteristics in a scale model of the vessel cooling system for the HTTR

  • Tomasz Kwiatkowski;Michal Jedrzejczyk;Afaque Shams
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1310-1319
    • /
    • 2024
  • The reactor cavity cooling system (RCCS) is a passive reactor safety system commonly present in the designs of High-Temperature Gas-cooled Reactors (HTGR) that removes heat from the reactor pressure vessel by means of natural convection and radiation. It is one of the factors responsible for ensuring that the reactor does not melt down under any plausible accident scenario. For the simulation of accident scenarios, which are transient phenomena unfolding over a span of up to several days, intermediate fidelity methods and system codes must be employed to limit the models' execution time. These models can quantify radiation heat transfer well, but heat transfer caused by natural convection must be quantified with the use of correlations for the heat transfer coefficient. It is difficult to obtain reliable correlations for HTGR RCCS heat transfer coefficients experimentally due to such a system's size. They could, however, be obtained from high-fidelity steady-state simulations of RCCSs. The Rayleigh number in RCCSs is too high for using a Direct Numerical Simulation (DNS) technique; thus, a Reynolds-Averaged Navier-Stokes (RANS) approach must be employed. There are many RANS models, each performing best under different geometry and fluid flow conditions. To find the most suitable one for simulating an RCCS, the RANS models need to be validated. This work benchmarks various RANS models against three experiments performed on the HTTR RCCS Mockup by the Japanese Atomic Energy Agency (JAEA) in 1993. This facility is a 1/6 scale model of a vessel cooling system (VCS) for the High Temperature Engineering Test Reactor (HTTR), which is operated by JAEA. Multiple RANS models were evaluated on a simplified 2d-axisymmetric geometry. They were found to reproduce the experimental temperature profiles with errors of up to 22% for the lowest temperature benchmark and 15% for the higher temperature benchmarks. The results highlight that the pragmatic turbulence models need to be validated for high Rayleigh natural convection-driven flows and improved accordingly, more publicly available experimental data of RCCS resembling experiments is needed and indicate that a 2d-axisymmetric geometry approximation is likely insufficient to capture all the relevant phenomena in RCCS simulations.

Low algal diversity systems are a promising method for biodiesel production in wastewater fed open reactors

  • Bhattacharjee, Meenakshi;Siemann, Evan
    • ALGAE
    • /
    • 제30권1호
    • /
    • pp.67-79
    • /
    • 2015
  • Planktivorous fish which limit zooplankton grazing have been predicted to increase algal biodiesel production in wastewater fed open reactors. In addition, tanks with higher algal diversity have been predicted to be more stable, more productive, and to more fully remove nutrients from wastewater. To test these predictions, we conducted a 14-week experiment in Houston, TX using twelve 2,270-L open tanks continuously supplied with wastewater. Tanks received algal composition (monocultures or diverse assemblage) and trophic (fish or no fish) treatments in a full-factorial design. Monocultures produced more algal and fatty acid methyl ester (FAME) mass than diverse tanks. More than 80% of lipids were converted to FAME indicating potentially high production for conversion to biodiesel (up to $0.9T\;ha^{-1}y^{-1}$). Prolific algal growth lowered temperature and levels of total dissolved solids in the tanks and increased pH and dissolved oxygen compared to supply water. Algae in the tanks removed 91% of nitrate-N and 53% of phosphorus from wastewater. Monocultures were not invaded by other algal species. Fish did not affect any variables. Our results indicated that algae can be grown in open tank bioreactors using wastewater as a nutrient source. The stable productivity of monocultures suggests that this may be a viable production method to procure algal biomass for biodiesel production.

황산염환원균을 이용한 폐광폐수의 중금속 제거 (Removal of Heavy Metals from Acid Mine Drainage Using Sulfate Reducing Bacteria)

  • 백병천;김광복
    • 상하수도학회지
    • /
    • 제13권2호
    • /
    • pp.47-54
    • /
    • 1999
  • SRB(Sulfate Reducing Bacteria) converts sulfate into sulfide using an organic carbon source as the electron donor. The sulfide formed precipitates the various metals present in the AMD (Acid Mine Drainage). This study is the fundamental research on heavy metal removal from AMD using SRB. Two completely mixed anaerobic reactors were operated for cultivation of SRB at the temperature of $30^{\circ}C$ and anaerobic batch reactors were used to evaluate the effects of carbon source, COD/sulfate($SO_4^=$) ratio and alkalinity on sulfate reduction rate and heavy metal removal efficiency. AMD used in this study was characterized by low pH 3.0 and 1000mg/l of sulfate and dissolved high concentration of heavy metals such as iron, cadmium, copper, zinc and lead. It was found that glucose was an organic carbon source better than acetate as the electron donor of SRB for sulfate reduction in AMD. Amount of sulfate reduction maximized at the COD(glucose)/sulfate ratio of 0.5 in the influent and then removal efficiencies of heavy metals were 97.5% of Cu, 100% of Pb, 100% of Cr, 49% of Mn, 98% of Zn, 100% Cd and 92.4% of Fe. Although sulfate reduction results in an increase in the alkalinity of the reactor, alkalinity of 1000mg/1 (as $CaCo_3$) should be should be added continuously to the anaerobic reactor in order to remove heavy metals from AMD.

  • PDF