• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.033 seconds

A Study on Vibration Control for Reheater Attemperator Piping in Power Plant (재열기 온도조절 급수배관의 진동저감방안 연구)

  • Jeon, Chang-Bin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1-5
    • /
    • 2007
  • A majority of piping vibration problems are induced by internal fluid pulsation; turbulent flow, vortex shedding at internal discontinuities, and pressure pulsation at equipment nozzles. The pulsation at the pressure sources resonates acoustically with the piping and the amplified pressure pulsation can generate shell mode vibration in the piping. Reheater attemperator piping supplies water from feedwater pump to reheater attemperator to control the boiler temperature. In normal operating condition, the high frequency shell mode vibration occurred in the piping with the high level of sound(105 ${\sim}$ 117 dB). The vibration sources are pressure pulsation in the pump nozzle and the frequencies are related to the blade passing frequencies. The objects of this paper are to analyze the cause of the high frequency vibration and to establish corrective actions.

  • PDF

Performance Analysis of Once-through HRSG and Steam Turbine System (관류형 열회수 증기발생기와 증기터빈 시스템의 성능해석)

  • Yang, J.S.;Kim, T.S.;Ro, S.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.872-877
    • /
    • 2001
  • This study analyzed the design performance of the bottoming system of combined cycle power plants adopting a single-pressure once-through heat recovery steam generator with reheat. A computer program was constructed and parametric analyses were carried out to present the criteria for determining the reheat pressure and the location of the starring point of the reheater in the HRSG. The performance of the bottoming system was presented for the range from high subcritical to supercritical pressures. It was founded that the power of the bottoming system can be as high as that of the present triple-pressure bottoming system even with a higher exhaust gas temperature. A requirement for this high performance is a proper arrangement of the reheater.

  • PDF

A Drag and Flow Characteristics around the Hybrid Projectile (하이브리드탄의 항력 및 유동해석)

  • 이상길;이동현
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.23-34
    • /
    • 2000
  • Three dimensional, compressible, mass weighted averaging of Favre, Navier-Stokes system with k-$\varepsilon$ turbulence, is numerically discretized to compute three dimensional multiple jet interaction flow fields for a hybrid projectile containing three rocket motors in the ogive section. Numerical flow field computations have been made for angled nose jets and rockets at supersonic speed using multiblock structured grid. The jet conditions include very high jet to free stream pressure ratio and high temperature. It is shown that the strength of nozzle stagnation pressure affects the flow field near the side nozzle and the high stagnation pressure increases total amount of drag by a few percent. However, minor drag loss due to the pressure drag might be fully overcomed by an additional axial thrust. The results of present study can be applied for the design of future hybrid projectile.

  • PDF

Flow Control for High Pressure Gas by using a Solenoid Valve (솔레노이드 밸브를 이용한 고압가스의 유량제어)

  • Sim Han-sub;Lee Chi-woo;Kim Nam-kyung;Ahn Kook-chan;Namkoong Chai-kwan
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.156-161
    • /
    • 2005
  • Dynamic flow characteristics of a solenoid valve are affected by pressure difference in inlet and outlet of orifice, gas temperature, and supply voltage of a coil. In this paper, the dynamic flow characteristics for deviations of various conditions are studied Static and dynamic flow for variation on-time of a solenoid valve open signal are measured in basic bench test. The solenoid valve is applied to a compressed natural gas(CNG) engine test for validation of flow control performance. The experimental results show that flow of high pressure gas can controlled precisely by using a solenoid valve.

  • PDF

Creep Damage Evaluation of High-Temperature Pipeline Material for Fossil Power Plant by Ultrasonic Test Method (초음파에 의한 발전소 고온배관재료의 크리프손상 평가)

  • Lee, Sang-Guk;Chung, Min-Hwa
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.99-107
    • /
    • 1999
  • Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep damage due to severe operationg conditions which are high temperature and high pressure for an extended period time. Such material degradation leads to various component failures causing serious accidents at the plants. Conventional measurement techniques such as replica method, electric resistance method, and hardness test method have such disadvantages as complex preparation and measurement procedures, too many control parameters, and therefore, low practicality and they were applied only to component surfaces with good accessibility. In this paper, artificial creep degradation test and ultrasonic measurement for their creep degraded specimens have been carried out for the purpose of evaluation for creep damage which can occur in high-temperature pipeline of fossil power plant. Absolute measuring method of quantitative ultrasonic measurement for material degradation was established, and long term creep degradationtests using life prediction formula were carried out. As a result of ultrasonic tests for crept specimens, we confirmed that the sound velocity decreased and the attenuation coefficient linearly increased in proportion to the increase of creep fractiin(${\phi}$c).

  • PDF

Emission Plasma Spectroscopy of High-pressure Microdischarges

  • Lee, Byeong-Jun;Ju, Yeong-Do;Kim, Seung-Hwan;Ha, Tae-Gyun;Gong, Hyeong-Seop;Park, Yong-Jeong;Park, Jong-Do;Nam, Sang-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.253.2-253.2
    • /
    • 2014
  • Micro hollow cathode discharges (MHCDs) are high-pressure, non-equilibrium discharges. Those MHCDs are useful to produce an excimer radiation. A major advantage of excimer sources is their high internal efficiency which may reach values up to 40% when operated under optimum conditions. To produce strong excimer radiation, the optimisation of the discharge conditions however needs a detailed knowledge of the properties of the discharge plasma itself. The electron density and temperature influence the excitation as well as plasma chemistry reactions and the gas temperature plays a major role as a significant energy loss process limiting efficiency of excimer radiation. Most of the recent spectroscopic investigations are focusing on the ultraviolet or vacuum ultraviolet range for direct detection of the excimer. In our experiments we have concentrated on investigating the micro hollow cathodes from the near UV to the near infrared (300~850 nm) to measure the basic plasma parameters using standard plasma diagnostic techniques such as stark broadening for electron density and the relative line intensity method for electron temperature. Finally, the neutral gas temperature was measured by means of the vibrational rotational structures of the second positive system of nitrogen.

  • PDF

Design of Rankine Steam Cycle and Performance Evaluation of HT Boiler for Engine Waste Heat Recovery (엔진 폐열 회수를 위한 랭킨 스팀 사이클 설계 및 HT Boiler의 성능 평가)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Lee, Dong-Hyuk;Lee, Heon-Kyun;Kim, Tae-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.21-29
    • /
    • 2012
  • A dual loop waste heat recovery system with Rankine steam cycles for the improvement of fuel efficiency of gasoline vehicles has been investigated. A high temperature loop (HT loop) only recovers the heat of the exhaust gas. A low temperature loop (LT loop) recovers the residual heat from the HT loop, the coolant heat and the remaining exhaust gas heat. The two separate loops are coupled with a heat exchanger. This paper has dealt with a layout of the dual loop system, the review of the working fluids, and the design of the cycle. The design point and the target heat recovery of the HT boiler, a core part of a HT loop, have been presented. The prototype of the HT boiler was evaluated by experiment. For the performance evaluation of the HT boiler, inlet temperature of the HT boiler working fluid was set equal to the temperature degree of sub-cool of $5^{\circ}C$ at the condensing pressure. The exit condition was the degree of super-heat set at $5^{\circ}C$. The characteristics of the HT boiler such as heat recovery and pressure drops of fluids were evaluated with varying flow rates and inlet temperatures of exhaust gas under various evaporating pressure conditions.

A Study on the Fabrication and Electrical Characteristics of Hydraulic Pressure Sensors by Using Ceramics Materials (세라믹소재를 이용한 해수압센서 제작 및 전기적 특성 연구)

  • Park, Sung-Hyun;Kim, Eun-Sup;Jung, Jung-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.6
    • /
    • pp.384-389
    • /
    • 2015
  • In this paper, we fabricated ceramic body and sapphire wafer in order to develop a hydraulic pressure sensor with high sensitivity and high temperature stability. The sapphire wafer was adopted with a membrane of capacitance ceramic pressure sensor. The capacitance value of the sensor for the finite element analysis(FEM) showed a linear pressure characteristics. Membrane was processed with a diameter of 32.4 mm and a thickness of 1 mm by using alumina powders. Ceramic body was processed with a diameter 32.4 mm and a thickness 5 mm. The capacitance pressure sensor was made with high heat treatment of the ceramic body and the sapphire wafer. Initially capacitance of the pressure sensor was 50 pF and a capacitance of 110 pF was measured from 5 bar pressure. Output voltage of 5 V was appeared at 5 bar pressure.

High Pressure Phase Behavior in the Binary Polyethylene/Butane and Polyethylene/Dimethyl Ether Systems (이성분 폴리에틸렌/부탄과 폴리에틸렌/디메틸 에테르계의 고압 상거동)

  • Jeon, Nam-Seok;Byun, Hun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.761-766
    • /
    • 1999
  • In this paper, high pressure phase behavior in the binary polyethylene/butane and polyethylene/dimethyl ether has been studied. The pressure-temperature diagrams in polyethylene/butane were shown by increasing concentration for molecular weight standards, that is, $M_w=700,\;1000$ and 2000. It is found that the temperature and the pressures go up with increasing in concentrations for each molecular weight, but the latter lower in concentrations over 16 wt % polyethylene. In addition, the phase behaviors for each molecular weights with about 5 wt % polyethylene are shown in pressure-temperature, and pressures increase with increasing in molecular weight($M_w=700,\;1000$, and 2000). The phase behaviors in polyethylene/dimethyl ether are determined according to its molecular weight, and are shown for a range of pressures of 40~280 bar and temperatures of about $120{\sim}220^{\circ}C$. It is shown that in pressure-temperature of polyethylene/dimethyl ether the pressure increases with increasing in polyethylene molecular weight, and the difference in pressure for each molecular weight shows by about 60 bar. The gap in pressure between polyethylene/butane and polyethylene/dimethyl ether system with 5 wt % polyethylene for each molecular weight standards indicates about 25(700), 90(1000), and 100 bar(2000), respectively.

  • PDF

Comparison of DME HCCI Operating Ranges for the Thermal Stratification and Fuel Stratification based on a Multi-zone Modeling (Multi-zone 모델링을 통한 온도성층화와 농도성층화가 존재하는 DME HCCI 엔진의 운전영역에 관한 수치해석연구)

  • Jeong, Dong-Won;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.35-41
    • /
    • 2011
  • This work investigates the potential of in-cylinder thermal stratification and fuel stratification for extending the operating ranges in HCCI engines, and the coupling between thermal stratification and fuel stratification. Computational results areemployed. The computations were conducted using both a custom multi-zone version and the standard single-zone version of the Senkin application of the CHEMKINII kinetics rate code, and kinetic mechanism for di-methyl ether (DME). This study shows that the potential of thermal stratification and fuels stratification for extending the high-load operating limit by a staged combustion event with reduced pressure-rise rates is very large. It was also found that those stratification offers good potential to extend low-load limit by a same mechanism in high-load. However, a combination of thermal stratification and fuel stratification is not more effective than above stratification techniques for extending the operating ranges showing similar results of fuel stratification. Sufficient condition for combustion (enough temperature for) turns misfire in low-load limit to operate engines, which also leads to knock in high-load limit abruptly due to the too high temperature with high. DME shows a potential for maximizing effect of stratification to lower pressure-rise rate due to the characteristics of low-temperature heat release.