• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.033 seconds

Microstructure and Electric Contact Properties of Spark Plasma Sintered Ta-Cu Composite (방전플라즈마 소결법으로 제조된 Ta-Cu의 미세조직 및 전기접점 특성)

  • Ju, Won;Kim, Young Do;Sim, Jae Jin;Choi, Sang-Hoon;Hyun, Soong Keun;Lim, Kyoung Mook;Park, Kyoung-Tae
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.377-383
    • /
    • 2017
  • Microstructure, electric, and thermal properties of the Ta-Cu composite is evaluated for the application in electric contact materials. This material has the potential to be used in a medium for a high current range of current conditions, replacing Ag-MO, W, and WC containing materials. The optimized SPS process conditions are a temperature of $900^{\circ}C$ for a 5 min holding time under a 30 MPa mechanical pressure. Comparative research is carried out for the calculated and actual values of the thermal and electric properties. The range of actual thermal and electric properties of the Ta-Cu composite are 50~300 W/mk and 10~90 %IACS, respectively, according to the compositional change of the 90 to 10 wt% Ta-Cu system. The results related to the electric contact properties, suggest that less than 50 wt% of Ta compositions are possible in applications of electric contact materials.

Thermocompression bonding for wafer level hermetic packaging of RF-MEMS devices (RF-MEMS 소자의 웨이퍼 레벨 밀봉 패키징을 위한 열압축 본딩)

  • Park, Gil-Soo;Seo, Sang-Won;Choi, Woo-Beom;Kim, Jin-Sang;Nahm, Sahn;Lee, Jong-Heun;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.58-64
    • /
    • 2006
  • In this study, we describe a low-temperature wafer-level thermocompression bonding using electroplated gold seal line and bonding pads by electroplating method for RF-MEMS devices. Silicon wafers, electroplated with gold (Au), were completely bonded at $320^{\circ}C$ for 30 min at a pressure of 2.5 MPa. The through-hole interconnection between the packaged devices and external terminal did not need metal filling process and was made by gold films deposited on the sidewall of the throughhole. This process was low-cost and short in duration. Helium leak rate, which is measured to evaluate the reliability of bonded wafers, was $2.7{\pm}0.614{\times}10^{-10}Pam^{3}/s$. The insertion loss of the CPW packaged was $-0.069{\sim}-0.085\;dB$. The difference of the insertion loss between the unpackaged and packaged CPW was less than -0.03. These values show very good RF characteristics of the packaging. Therefore, gold thermocompression bonding can be applied to high quality hermetic wafer level packaging of RF-MEMS devices.

Spray-atomization Characteristics of Biodiesel Fuel with Multiple Injection (다단분사를 적용한 바이오디젤 연료의 분무 미립화 특성)

  • Park, Su-Han;Kim, Hyung-Jun;Kim, Se-Hun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.40-47
    • /
    • 2010
  • This study deals with the investigation about the effect of the pilot and split injection strategies on the spray-atomization characteristics of biodiesel fuel derived from a soybean oil. Experimental results were compared with the calculation results obtained from the numerical analysis. Fuel properties of biodiesel according to the variation of the fuel temperature were inserted to the fuel library in the KIVA code. The amount of fuel injection is divided into equal mass for each split and main injection. In this work, the pilot injection strategy can be achieved by the amount of fuel injection shortly before the start of the main injection. A spray tip penetration, radial distance and spray area were measured for the analysis of macroscopic spray characteristics. In addition, the local and overall droplet size distribution were calculated by using KIVA-3V code to study the effect of split and pilot injection on the atomization performance under high ambient pressure. From these studies, the experimental results showed the multiple injection induced the decrease of the spray tip penetration due to the reduction and division of the spray momentum compared to single injection. In the atomization performance, the droplet size increased in the case of the multiple injection a little. Moreover, the SMD slightly increased as the fuel droplets goes through the axial direction. The spray behavior of numerical results were well predicted the experimental multiple spray characteristics of biodiesel fuel.

Lipid Oxidation and Antioxidant Changes in Perilla Seeds during Heating (가열에 의한 들깨의 지방질 산화와 산화방지제의 변화)

  • Wang, Seon-Yeong;Choe, Eun-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.711-718
    • /
    • 2011
  • Effects of heating conditions and seed roasting on the lipid oxidation and antioxidants of perilla seeds were studied. Perilla seeds, that were unroasted or roasted at $180^{\circ}C$ for 20 min, were ground and heated over steam at $100^{\circ}C/1$ atm or at $135^{\circ}C/2$ atm. Lipid oxidation was evaluated by peroxide value, conjugated dienoic acids contents, and fatty acid composition. Tocopherols and polyphenols were also determined. Lipid oxidation of perilla seeds was higher during heating at $135^{\circ}C/2$ atm than at $100^{\circ}C/1$ atm, and the oxidation rate was lower in unroasted seeds than in roasted seeds. Degradation of tocopherols and polyphenols in perilla seeds during heating was faster under high pressure and temperature, and was decreased by seed roasting. Contribution of polyphenols to the oxidative stability of perilla seeds during heating was higher than that of tocopherols, suggesting polyphenols and seed roasting as important factors in lipid oxidation of perilla seeds.

Ostwald Ripening Stability of Curcumin-Loaded MCT Nanoemulsion: Influence of Various Emulsifiers

  • Kim, Sun-Hyung;Ji, Yeun-Sun;Lee, Eui-Seok;Hong, Soon-Taek
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.3
    • /
    • pp.289-295
    • /
    • 2016
  • Curcumin is a flavonoid found in the rhizome of the turmeric plant (Curcuma longa L.) and has recently attracted interest because it has numerous biological functions and therapeutic properties. In the present study, we attempted to incorporate curcumin into medium-chain triglyceride (MCT) nanoemulsions (0.15 wt% curcumin, 10 wt% MCT oil, and 10 wt% emulsifiers) with various emulsifiers [polyoxyethylene (20) sorbitan monolaurate (Tween-20), sorbitan monooleate (SM), and soy lecithin (SL)]. The physicochemical properties of the nanoemulsions including the Ostwald ripening stability were investigated. The initial droplet size was found to be 89.08 nm for the nanoemulsion with 10 wt% Tween-20 (control), and when Tween-20 was partially replaced with SM and SL, the size decreased: 73.43 nm with 4 wt% SM+6 wt% Tween-20 and 67.68 nm with 4 wt% SL+6 wt% Tween-20 (prepared at 15,000 psi). When the nanoemulsions were stored for 28 days at room temperature, the droplet size increased as the storage time increased. The largest increase was observed for the control nanoemulsion, followed by the 4 wt% SL+6 wt% Tween-20 and 4 wt% SM+6 wt% Tween-20 systems. The Turbiscan dispersion stability results strongly supported the relationship between droplet size and storage time. The time-dependent increase in droplet size was attributed to the Ostwald ripening phenomenon. Thus, the Ostwald ripening stability of curcumin-loaded MCT nanoemulsions with Tween-20 was considerably improved by partially replacing the Tween-20 with SM or SL. In addition, curcumin may have acted as an Ostwald ripening inhibitor.

Phosphorus and Arsenic Diffusion used by Ampoule-tube Method into Undoped ZnO Thin Films and the Electrical Properties of p-type ZnO Thin Films (Undoped ZnO 박막에 Ampoule-tube 방법을 이용한 P와 As의 확산과 p형 ZnO 박막의 전기적 특성)

  • So, Soon-Jin;Wang, Min-Sung;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1043-1047
    • /
    • 2005
  • To investigate the electrical properties of the ZnO films which are interested in the next generation of short wavelength LEDs and Lasers, our ZnO thin films were deposited by RF sputtering system. At sputtering process of ZnO thin films, substrate temperature, work pressure respectively is $300^{\circ}C$ and 5.2 mTorr, and the purity of target is ZnO 5N. The thickness of ZnO thin films was about $2.1\;{\mu}m$ at SEM analysis after sputtering process. Phosphorus (P) and arsenic (As) were diffused into the undoped ZnO thin films sputtered by RF magnetron sputtering system in ampoule tube which was below $5\times10^{-7}$ Torr. The dopant sources of phosphorus and arsenic were $Zn_3P_2$ and $ZnAs_2$. Those diffusion was perform at 500, 600, and $700^{\circ}C$ during 3 hr. We found the diffusion condition of the conductive ZnO films which had n- and p-type properties. Our ZnO thin film has not only very high carrier concentration of above $10^{17}/cm^3$ but also low resistivity of below $2.0\times10^{-2}\;{\Omega}cm$.

Etching characteristics of gold thin films using inductively coupled Ar/$CF_4/Cl_2$ plasma (Ar/$CF_4/Cl_2$ 유도 결합 플라즈마에 의한 gold 박막의 식각특성)

  • Kim, Nam-Kyu;Chang, Yun-Seong;Kim, Dong-Pyo;Kim, Chang-Il;Chang, Eui-Goo;Lee, Byeong-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.190-194
    • /
    • 2002
  • In this study, the etching of Au thin films have been performed in an inductively coupled CF4/Cl2/Ar plasma. The etch properties were measured as the CF4 adds from 0 % to 30 % to the Cl2/(Cl2 + Ar) gas mixing ratio of 0.2. Other parameters were fixed at a rf power of 700 W, a dc bias voltage of 150 V, a chamber pressure of 15 mTorr, and a substrate temperature of $30^{\circ}C$. The highest etch rate of the Au thin film was 370 nm/min at a 10 % additive CF4 into Cl2/(Cl2 + Ar) gas mixing ratio of 0.2. The surface reaction of the etched Au thin films was investigated using x-ray photoelectron spectroscopy (XPS) analysis. From x-ray photoelectron spectroscopy (XPS) analysis, the intensities of Au peaks are changed. There is a chemical reaction between Cl and Au. Au-Cl is hard to remove on the surface because of its high melting point and the etching products can be sputtered by Ar ion bombardment. We obtained the cleaned and steep profile.

  • PDF

The Failure Analysis of Double Pipe for Insulation Used Power Plant by Grooving Corrosion (발전소용 이중보온용 강관의 홈부식(Grooving Corrosion)에 의한 파손 분석)

  • Ham, Jong-Oh;Park, Ki-Duck;Park, Sung-Jin;Sun, Il-Sik
    • Journal of Applied Reliability
    • /
    • v.15 no.3
    • /
    • pp.197-206
    • /
    • 2015
  • Failure analysis of pre-insulated pipe (SPPS 380, 400A) transporting high temperature water ($95{\sim}110^{\circ}C$) for a plant was carried out. The damaged area (${\Phi}5mm$) of pre-insulated pipe was found only on welds. The chemical composition of damaged pipe meets specification of carbon steel pipes for pressure service (KS D 3562). As results of microstructure analysis, crack propagated from outer to inside after pitting corrosion occurred on the outside surface. The non-metallic inclusion existed on the end of crack. And the non-metallic inclusion continuously and linearly formed along with the bond line of welds. Based on SEM-EDS analysis, the nonmetallic inclusions have higher Manganese (Mn) and Oxygen (O) content but sulfur (S) was not detected. As results of water quality analysis, hydrogen ion concentration and minerals like Fe, Mg, Si were in low level. But the content of dissolved oxygen (11.2 ppm) was slightly higher than that of standard. It seems that the cause of damaged pipe is grooving corrosion due to MnO inclusion formed on bond line and corrosion took place nearby welds.

Structural and Property Changes in Glass-like Carbons Formed by Heat Treatment and Addition of Filler

  • Kim, Jangsoon;Kim, Myung-Soo;Hahm, Hyun-Sik;Lim, Yun-Soo
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.399-406
    • /
    • 2004
  • Glass-like carbon precursors shrink significantly during curing and carbonization, which leads to crack formation and bending. Cured furan resin powder and ethanol were added to furan resin to diminish the weight loss, to suppress the shrinkage and bending, and to readily release the gases evolved during polymerization and curing. Curing and carbonization were controlled by pressure and slow heating to avoid damage to the samples. The effect of the filler and ethanol on the fabrication process was examined by measuring the properties of the glass-like carbon, such as the specific gravity, bending strength, electrical resistivity, and microstructural change. The specific gravities of the filler-added glass-like carbons were higher than those of the ethanol-added samples because of the formation of macropores from the vaporization of ethanol during the curing and polymerization processes. Although the ethanol-added glass-like carbons exhibited lower bending strengths after carbonization than did the filler-added samples, the opposite result was observed after aging at 2,600$^{\circ}C$. We found that the macropores created from ethanol were contracted and removed upon heat treatment. The electrical resistivity of the glass-like carbon aged at 2,600$^{\circ}C$ was lower than those of the samples carbonized at 1,000$^{\circ}C$. We attribute this phenomenon to the fact that aging at high temperature led to well-developed microstructures, the removal of macropores, and the reduction of the surface area.

CORE THERMAL HYDRAULIC BEHAVIOR DURING THE REFLOOD PHASE OF COLD-LEG LBLOCA EXPERIMENTS USING THE ATLAS TEST FACILITY

  • Cho, Seok;Park, Hyun-Sik;Choi, Ki-Yong;Kang, Kyoung-Ho;Baek, Won-Pil;Kim, Yeon-Sik
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1263-1274
    • /
    • 2009
  • Several experimental tests to simulate a reflood phase of a cold-leg LBLOCA of the APR1400 have been performed using the ATLAS facility. This paper describes the related experimental results with respect to the thermal-hydraulic behavior in the core and the system-core interactions during the reflood phase of the cold-leg LBLOCA conditions. The present descriptions will be focused on the LB-CL-09, LB-CL-11, LB-CL-14, and LB-CL-15 tests performed using the ATLAS. The LB-CL-09 is an integral effect test with conservative boundary condition; the LB-CL-11 and -14 are integral effect tests with realistic boundary conditions, and the LB-CL-15 is a separated effect test. The objectives of these tests are to investigate the thermal-hydraulic behavior during an entire reflood phase and to provide reliable experimental data for validating the LBLOCA analysis methodology for the APR1400. The initial and boundary conditions were obtained by applying scaling ratios to the MARS simulation results for the LBLOCA scenario of the APR1400. The ECC water flow rate from the safety injection tanks and the decay heat were simulated from the start of the reflood phase. The simulated core power was controlled to be 1.2 times that of the ANS-73 decay heat curve for LB-CL-09 and 1.02 times that of the ANS-79 decay curve for LB-CL-11, -14, and -15. The simulated ECC water flow rate from the high pressure safety injection pump was 0.32 kg/s. The present experimental data showed that the cladding temperature behavior is closely related to the collapsed water level in the core and the downcomer.