• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.036 seconds

Analysis and Investigation of International(UIC, EN, IEC) and Domestic Standards(Test Methods) for Climatic Wind Tunnel Test of Rolling Stock (철도차량 기후환경시험을 위한 국제 규격(UIC, EN, IEC) 및 국내 규격(시험방법) 분석 및 고찰)

  • Jang, Yong-Jun;Chung, Jong-Duk;Lee, Jae-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.782-789
    • /
    • 2020
  • The demand for the development of rolling stock technology to maintain the best performance in various climatic environments has increased to expand the overseas market of rolling stock. In this study, international and domestic standards that must be applied to build a harsh climatic environment test system were investigated and compared. The way of improvement for domestic standards is proposed. The wind velocities and temperatures are specified in the UIC, EN, and IEC standards for climatic wind tunnel, and EN 50125-1 provides the velocity test up to 180km/h, the largest wind speed. UIC and EN provide the lowest temperature of -45℃, and IEC 62498-1 provides the highest temperature 55℃. The solar radiation test was specified up to 1200W/m2 in the UIC, EN, and IEC. The IEC, EN, and KS R 9145 provide the water tightness standards, which are different from each other in water capacity, pressure, and methods. The snow test method was not well specified. KRTS-VE-Part 31 provides pressurization test methods. The airtightness standards for high-speed rolling stock are defined and regulated for internal pressure change rate in UIC 660 and 779-11. The domestic standard for the wind tunnel test was not well prepared, and the solar radiation test and snow test do not exist in Korea. Therefore, it is necessary to improve domestic standards to an international level for the climatic wind tunnel test of rolling stock.

Preparation and Evaluation of Hybrid Porous Membrane for the Application of Alkaline Water Electrolysis (알칼리 수전해 적용을 위한 하이브리드 다공성 격리막 제조 및 특성평가)

  • Han, Seong Min;Im, Kwang Seop;Jeong, Ha Neul;Kim, Do Hyeong;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.443-455
    • /
    • 2021
  • In this study, polyphenylene sulfide (PPS) was used as a support and a separator was manufactured using polysulfone and inorganic additives to manufacture a separator with low membrane resistance for application of an alkali water electrolysis system, and then the effect on the thickness and porosity of the support was analyzed. The PPS felt used as a support was compressed with variables of temperature (100℃, 150℃, 200℃) and pressure (1 ton, 2 tons, 3 tons, 5 tons) to adjust the thickness. A porous separator could be manufactured by preparing a slurry with polysulfone using BaTiO3 and ZrO2 which have high hydrophilicity and excellent alkali resistance as inorganic particles and casting the slurry on a compressed PPS felt. Changes in morphology of the separator according to compression conditions were confirmed through an electron scanning microscope (SEM). After that, the porosity was calculated, and the thickness and porosity tended to decrease as the compression conditions increased. Various characteristics were evaluated to confirm whether it could be used as a separator for water electrolysis. As a result of measuring the mechanical strength, it was confirmed that the tensile strength gradually increased as the compression conditions (temperature and pressure) increased. Finally, it was confirmed that the porous separator manufactured through the alkali resistance test has excellent alkali resistance, and through the IV test, it was confirmed that the membranes compressed at 100℃ and 150℃ had a lower voltage and improved performance than the existing uncompressed membrane.

Comparison of Growth and Yield Characteristics for the Desert Climate Adaptability of European Long- and Medium-sized Cucumber Varieties (유럽계 장과형과 중과형 오이 품종의 사막기후 적응성 검증을 위한 생육 및 수량 특성 비교)

  • Yoon, Seoa;Kim, Jeongman;Choi, Eunyoung;Choi, Kiyoung;Choi, Kyunglee;Nam, Kijeong;Oh, Seokkwi;Bae, Jonghyang;Lee, Yongbeom
    • Journal of Bio-Environment Control
    • /
    • v.31 no.2
    • /
    • pp.125-132
    • /
    • 2022
  • This study aimed to examine cucumber (Cucumis sativus) varieties adaptive to the desert climate by comparing and analyzing the growth, yield, and water consumption. Two long-sized cucumber varieties, 'Gulfstream' and 'Imea' and two medium-sized cucumbers, 'Nagene' and 'Sausan' were cultivated in coir substrate hydroponics under hot and humid greenhouse conditions from March 2 to June 20, 2020. On the 113 DAT, 'Nagene' had the longest plant height and the highest internode number. The marketable fruit number per plant was higher in the medium-sized varieties, which had more internode number. The marketable fruit number was 31.3 for 'Gulfstream', 30.7 for 'Imea', 57.8 for 'Nagene', or 56.0 for 'Sausan' with no significant difference in total fruit weights per plant. The water consumption required to produce 200 g of fruit was lower in the 'Nagene' (2.39 L) with the highest water use efficiency (WUE). Therefore, 'Nagene' variety may have higher adaptability to desert high temperature compared to the long-sized varieties, and it is going to be necessary to verify more medium-sized cucumber varieties.

Explosion Risk Assessment by Analysis of the Dust Characteristics of Bituminous Coal (유연탄 분진특성분석을 통한 폭발 위험성 평가)

  • Jae Young Park;Jin Young Moon;Yeo Song Yoon
    • Korean Chemical Engineering Research
    • /
    • v.62 no.4
    • /
    • pp.327-334
    • /
    • 2024
  • The risks associated with coal dust explosion were investigated by analyzing various characteristics affecting the possibility of explosion. Samples were collected directly from two regions of the transfer process where the most explosions occurred in coal-fired power plants, and the composition ratio and average particle diameter that could affect the experiment were considered. As experimental items, explosion intensity, particle size and distribution, moisture content, dust concentration, minimum ignition energy, minimum ignition temperature, and oxygen concentration that affect the explosion were evaluated. As a result, the explosion intensity was found to have a maximum explosion pressure of 7.1 bar at a dust concentration of 500 g/m3 in sample A, and the maximum explosion pressure increase rate was 366 bar/s. In terms of dust particle diameter and particle size distribution, sample A had an average diameter of 35 ㎛ (D 50%), which was smaller than sample B. The moisture content was 5.7% in sample A, which was more than twice as high as 2.5% in sample B. The minimum explosion concentration was 400 g/m3 in sample A, which was lower than 2,000 g/m3 in sample B, so it had a risk. Since neither sample exploded at 1,000 mJ, it is judged that if the minimum energy is 500 mJ or higher, it can be regarded as dust with a low sensitivity to ignition compared to similar previous studies. The minimum ignition temperature was 532℃ in sample A and 634℃ in sample B, so sample A was more dangerous than sample B. The marginal oxygen concentration was 18.0% in both samples, so it is judged that there is a constant risk of explosion in the atmosphere.

Filtration Characteristics of H2O-C6H12O6 Solution at Cell Membrane Model of Kidney which Irradiated by High Energy X-Ray (고에너지 엑스선을 조사한 신장의 세포막모델에서 포도당수용액 (H2O-C6H12O6)의 여과작용특성)

  • Ko, In-Ho;Yeo, Jin-Dong
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.85-95
    • /
    • 2020
  • The filtration characteristics of H2O-C6H12O6 solution at cell membrane model in renal tubule which irradiated by high energy x-ray(linac 6MV) was investigated. The cell membrane model used in this experiment was a polysulfonated copolymerized membrane of m-phenylene-diamine(MPD) and trimesoyl chloride(TMC)-hexane. They were used to two cell membrane models(CM-1, CM-2). The cell membrane model composed of 0.5 wt% TMC-hexane solution(CM-2) had higher permeate flux(Jv) and rejection coefficient(R) than composed of 0.1 wt% TMC-hexane solution(CM-1). The permeate flux(Jv) and rejection coefficient(R) of H2O-C6H12O6 solution in two cell membrane models(CM-1, CM-2) were increased with increase of pressure drop and effective pressure difference. In this experiment range(pressure 1.5-4 MPa, temperature 36.5 ℃), permeate flux(Jv) of H2O solvent in irradiated membrane was found to be decreased about 20-30 times than non-irradiated membrane, permeate flux(Jv) and rejection coefficient(R) of H2O-C6H12O6 solution in irradiated membrane was found to be decreased about 2-13 times, about 4-6 times than non-irradiated membrane, respectively. The concentration increase of H2O-C6H12O6 solution at cell membrane model significantly was increased at rejection coefficient(R), was decreased at permeate flux(Jv). As the filtration of H2O-C6H12O6 solution in cell membrane model were abnormal, cell damages were appeared at cell.

Effects of Supplemental Lighting of High Pressure Sodium and Lighting Emitting Plasma on Growth and Productivity of Paprika during Low Radiation Period of Winter Season (겨울철 약광기 파프리카의 생육 및 생산성에 대한 고압나트륨 및 Lighting Emitting Plasma 램프의 보광 효과)

  • Lee, Jong-Won;Kim, Ho Cheol;Jeong, Pyeong Hwa;Ku, Yang-Gyu;Bae, Jong Hyang
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.346-352
    • /
    • 2014
  • This research was carried out to investigate the effect of supplemental lighting on stable productivity of paprika (Capsicum annuum L.) during low radiation period of winter season. The supplemental lighting sources used in this research were high pressure sodium (HPS) and lighting emitting plasma (LEP). Photosynthetic photon flux density (PPFD) emitted from both lamps decreased as vertical distance from lamp increased. The PPFD of LEP lamps were twice more than that of the HPS lamp per unit distance, but the rate of decreased PPFD of t he LEP per unit distance was higher than that of HPS lamp. And different degrees of PPFD between HPS and LEP lamps by horizontal distance had a smaller degree of difference than by vertical distance at the 100 cm away point. As daily average PPFD measured at the top of the plant under the supplemental lighting during January, the supplemental lighting significantly increased radiation. Radiation of HPS and LEP lighting was 137% and 315% higher than control (without supplemental lighting = sunlight). Air temperature in the top of the plant was not significant different among treatments. HPS and LEP lighting had no effect on increase of flower settings. Leaf length and width with LEP lighting was the longest, photosynthetic was higher than those of other treatments. Supplemental lighting treatments significant increased fruit length and diameter. Especially LEP lighting treatment had a greater effect on fruit length and diameter. In conclusion, LEP lighting treatment during low radiation period greatly affected growth and production of paprika. Further research will be required for the suitable application of LEP lighting in paprika production.

Impact of East Asian Summer Atmospheric Warming on PM2.5 Aerosols (동아시아 지역의 여름철 온난화가 PM2.5 에어로졸에 미치는 영향)

  • So-Jeong Kim;Jae-Hee Cho;Hak-Sung Kim
    • Journal of the Korean earth science society
    • /
    • v.45 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • This study analyzed the effect of warming on PM2.5 aerosol production in mid-latitude East Asia during June 2020 using PM2.5 aerosol anomalies, which were identified by incorporating meteorological and climate data into the Weather Research Forecasting model coupled with Chemistry (WRF-Chem) model. The decadal temperature change trend over a 30-year period (1991-2020) in East Asia showed that recent warming has been greater in summer than in winter. Summer warming in East Asia generated low and high pressure in the lower and upper troposphere, respectively, over China. The boundary between the lower tropospheric low and upper tropospheric high pressure sloped along the terrain from the Tibetan Plateau to Korea. The eastern China, Yellow Sea, and Korean regions experienced a convergence of warm and humid southwesterly airflows originating from the East China Sea with the development of a northwesterly Pacific high pressure. In June 2020, the highest temperatures were observed since 1973 in Korea. Meanwhile, enhanced warming in East Asia increased the production of PM2.5 aerosols that travelled long distances from eastern China to Korea. PM2.5 anomalies, which were derived solely by inputting meteorological and climatic data (1991-2020) into the WRF-Chem model and excluding emission variations, showed a positive distribution extending from eastern China to South Korea across the Yellow Sea as well as over the Pacific Northwest. Thus, the contribution of warming to PM2.5 aerosols in East Asia during June 2020 was more than 50%. In particular, PM2.5 aerosols were transported from eastern China to Korea through the Yellow Sea, where the warm and humid southwesterly airflows implied wet scavenging of sulfate but promoted nitrate production.

Changes of Physical Characteristics of Cooked Rice by Pressure Cooking (가압취반시(加壓炊飯時) 미반(米飯)의 물성변화(物性變化)에 관(關)한 연구(硏究))

  • Kim, Dong Woo;Chang, Kyu Seob
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.1
    • /
    • pp.97-107
    • /
    • 1981
  • This study was carried out in order to provide the basic data necessary to develop the effective and desirable cooking method on large scale for investigating the physical characteristics of cooked rices and studying optimum cooking conditions by pressure in kettle cooking rices. Milyang-15, local Japonica type and Milyang-23, high yielding Indica type major varieties cultivated in Korea were used as cooking sample after polishing 70% and 90% respectively, and the results obtained are summarized as follows. 1. The average moisture content of cooked rice by open kettle and pressure kettle method in typical households were 65.17% and 64.52%, respectively. 2. In water absorption capacity of rice grain Milyang-23 was 4.5% higher than Milyang-15, and maximum water content after absorption in Milyang-23 was 29.14%. 3. The expansion volume of cooked rice was changed proportionally by water absorption, heating temperature and time, and maximum expansion volume of cooked rice was 3.2 times greater than rice grain. 4. The gelatinization degree of cooked rice intensively concerning in hardness of rice grain was increased as water-to-rice ratio, heating temperature and time increased, and it was 0.44 in Milyang-23 and 0.64 in Milyang-15 under the optimum cooking conditions as 160% water-to-rice ratio, $0.2kg/cm^2$ cooking pressure and 25 minutes cooking time. 5. The hardness of cooked rice was decreased as water-to-rice ratio, heating temperature and time increased, and it showed 2.35kg/wt in 90% polished Milyang-23 and 2.0kg/wt in 90 polished Milyang-15 under optimum cooking conditions. For maintaining the same level of hardness of cooking rice Milyang-23 required 25% much more water than Milyang-15. 6. The elasticity of cooked rice was changed proportionally by water-to-rice ratio, heating temperature and time, and it appeared 19.2mm and 15.7mm in 90% polished Milyang-15 and Milyang-23 respectively. 7. The gumminess of cooked rice was decreased as water-to-rice ratio, heating temperature and time increased, and it showed 60 and 73 in 90% polished Milyang-23 and Milyang-15, respectively. 8. The optimum cooking time on differerent pressure in kettle took 25 minutes at $0.2kg/cm^2$, 20 minutes at $0.4kg/cm^2$, 15 minutes at $0.6kg/cm^2$, and 10 minutes at $0.8kg/cm^2$.

  • PDF

Studies on Brewing of Apple Wine -Apple wine containing lower concentration of alcohol- (사과주(果實酒)양조(釀造)에 관(關)한 연구(硏究) -저농도주정함유(低濃度酒精含有) 사과주에 관(關)하여-)

  • Chung, Ki-Taek;Hong, Soon-Duck;Yu, Tae-Shick;Song, Hyung-Ik
    • The Korean Journal of Mycology
    • /
    • v.6 no.1
    • /
    • pp.29-41
    • /
    • 1978
  • This study aims to brew apple wine containing lower concentration of alcohol by fermentation and to retain $CO_2$ gas in apple wine, and investigation for the possibility of storage at room temperature was performed. A Saccharomyces sp. was proved to be acceptable for production of base wine as its higher fermentation rate at $20{\sim}25^{\circ}C$. However, B-2 was most reasonable for post-fermentation of apple wine as this strain strongly ferments sugars at low temperature $(4^{\circ}C)$. The yield of apple juice increased by maceration of apple pulps. The yield was about 5 % more than that of the unmacerated juice, whereas acid content was decreased by 10% compared with control. When stored apple wine containing 9% alcobol was introduced $1{\sim}3%$ sucrose at $7{\sim}8^{\circ}C$ for 100 days or more, the $CO_2$ pressure of apple wine in bottle shows $3kg/cm^2$ by bottle-pressure meter. It showed good storage of the wine at room temperature. $CO_2$ gas pressure in apple wine containing 6% alcohol, $5{\sim}10%$ hop extract, and 2% sugar was $2kg/cm^2$, he result also showed possibility of storage. Whereas 6% concentration of alcoholic apple wine without hop extract caused unusual fermentation during storage at the same condition. The desirable conditions for high quality apple wine should have $CO_2$ pressure of $2kg/cm^2$ or more and should be added $1{\sim}2% sugar to base wine. From these results, it can be concluded that the brewing of lower alcoholic apple wine is possible.

  • PDF

The role of porous graphite plate for high quality SiC crystal growth by PVT method (고품질 4H-SiC 단결정 성장을 위한 다공성 흑연 판의 역할)

  • Lee, Hee-Jun;Lee, Hee-Tae;Shin, Hee-Won;Park, Mi-Seon;Jang, Yeon-Suk;Lee, Won-Jae;Yeo, Im-Gyu;Eun, Tai-Hee;Kim, Jang-Yul;Chun, Myoung-Chul;Lee, Si-Hyun;Kim, Jung-Gon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.2
    • /
    • pp.51-55
    • /
    • 2015
  • The present research is focused on the effect of porous graphite what is influenced on the 4H-SiC crystal growth by PVT method. We expect that it produces more C-rich and a change of temperature gradient for polytype stability of 4H-SiC crystal as adding the porous graphite in the growth cell. The SiC seeds and high purity SiC source materials were placed on opposite side in a sealed graphite crucible which was surrounded by graphite insulator. The growth temperature was around $2100{\sim}2300^{\circ}C$ and the growth pressure was 10~30 Torr of an argon pressure with 5~15 % nitrogen. 2 inch $4^{\circ}$ off-axis 4H-SiC with C-face (000-1) was used as a seed material. The porous graphite plate was inserted on SiC powder source to produce a more C-rich for polytype stability of 4H-SiC crystal and uniform radial temperature gradient. While in case of the conventional crucible, various polytypes such as 6H-, 15R-SiC were observed on SiC wafers, only 4H-SiC polytype was observed on SiC wafers prepared in porous graphite inserted crucible. The defect level such as MP and EP density of SiC crystal grown in the conventional crucible was observed to be higher than that of porous graphite inserted crucible. The better crystal quality of SiC grown using porous graphite plate was also confirmed by rocking curve measurement and Raman spectra analysis.