• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.036 seconds

Ethanol-pretreated Drying of (+)-dihydromyricetin for Removal of Residual Solvents (잔류 용매 제거를 위한 (+)-dihydromyricetin의 에탄올 전처리 건조)

  • Lee, Hee-Gun;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.237-242
    • /
    • 2022
  • In this study, a drying method that can effectively remove residual solvent from (+)-dihydromyricetin was developed. Residual acetone concentration was efficiently removed below ICH-specified value (5,000 ppm) by simple rotary evaporation with ethanol pretreatment. In addition, the residual ethanol met the ICH-specified value (5,000 ppm) by simple rotary evaporation through the addition of water, and the residual moisture also met the specified value (<4%) for active pharmaceutical ingredients. At all the drying temperature (35, 45, and 55 ℃), a large amount of the residual solvent was initially removed during the drying, and the drying efficiency increased when increasing the drying temperature. Removal of residual solvent by ethanol pretreatment was shown to be related to high vapor pressure of acetone-ethanol mixture and hydrogen bonding between acetone and ethanol.

Effect of the De-NOx Facility Operating Condition on NOx Emission in a 125 MW Wood Pellet Power Plant (125 MW급 우드펠릿 발전소에서 탈질설비 운전조건이 질소산화물 발생량에 미치는 영향)

  • Jeon, Moonsoo;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.18 no.3
    • /
    • pp.52-61
    • /
    • 2022
  • This study tested the effect of de-NOx Facility operating condition on Nox emisiion in a 125 MW wood pellet power plant in Yeongdong Eco Power Plant Unit 1, which is in operation. As SNCR urea flow rate increased, NOx emission gradually decreased, but ammonia slip after SCR increased. The boiler under test has a structure that is unfavorable to SNCR operation due to the high internal temperature, and the optimum location of the nozzle will be required. SCR dilution air temperature change did not affect the amount of NOx generated. Increasing SCR ammonia flow reduced the NOx emission at SCR outlet and also increased the NOx removal efficiency. However, the ammonia flow rate of 111 kg/h, which does not exceed the ammonia slip its own reference limit, is estimated to be the maximum operating standard. The increase in SCR mixer pressure reduced NOx emission and the removal efficiency was also measured to be the most effective variable to inhibit NOx production.

  • PDF

Optimization of Cooling Conditions by Supplying Cutting Oil Applied with Mist Nozzle to Minimize Tapping Processing Temperature (Tapping 가공 온도 최소화를 위해 미스트 노즐 적용 절삭유 공급에 따른 냉각조건 최적화)

  • Oh, Chang-hyouk;Kim, Young-Shin;Jeon, Euy-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.98-104
    • /
    • 2022
  • When processing parts, the cutting oil can improve the cooling performance of the workpiece and tool to increase the precision of the workpiece or extend the life of the tool and facilitate chip extraction. Since such cutting oil has a harmful effect on the environment and the human body due to additives such as sulfur, research on a minimum lubrication supply method using an eco-friendly oil is recently underway. The minimum lubrication supply method minimizes the amount of cutting oil used during processing and processes it, which can reduce the amount of cutting oil used, but has a problem in that cooling performance efficiency is poor. Therefore, this study conducted a study on mist cooling of lubricants to reduce the amount of cutting oil used and maximize the cooling effect of processing heat generated during tapping processing. Spray pressure, processing speed, direction, and lubricant spray amount, which are considered to have an effect on cooling performance, were set as process conditions, and the effect on temperature was analyzed by performing an experiment using the box benquin method among experiments were analyzed. Through the experimental analysis results, the optimal conditions for mist and processing that maximize the cooling effect were derived, and the validity of the results derived through additional experiments was verified. In the case of processing by applying the mist lubrication method verified through this study, it is considered that high-precision processing is possible by improving the cooling effect.

Synthesis and characterization of Pb10-xCux(PO4)6O polycrystalline samples

  • Huiwon Kim;Minsik Kong;Minjae Kim;Seohee Kim;Jong Mok Ok
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.5-9
    • /
    • 2023
  • Lee, Kim, et al. reported in July 2023 that a modified lead apatite material, Pb10-xCux(PO4)6O (0.9 < x < 1.1), exhibited superconductivity at room temperature and atmospheric pressure [1, 2]. However, their X-ray diffraction data clearly showed the presence of impurity phases, including Cu2S, raising uncertainty about the sample quality. Subsequent studies have been conducted; however, different samples exhibited various physical properties. To verify the recipe for the sample growth process, we synthesized samples following the methodology outlined in the reference [1, 2]. An analysis of the structure and physical properties of the synthesized sample reaffirms the critical importance of high-quality sample growth.

A Study on the Steam Reforming Reaction of DME on Cu/ZnO/Al2O3 Catalyst for Hydrogen Production (수소 생산을 위한 Cu/ZnO/Al2O3 촉매상에서 DME의 수증기 개질 반응 연구)

  • HYUNSEUNG BYUN;YUNJI KU;JUHEE OH;JAESUNG BAN;YOUNGJIN RAH;JESEOL LEE;WONJUN CHO
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.581-586
    • /
    • 2023
  • As the development of alternative energy is required due to the depletion of fossil fuels, interest in the use of hydrogen energy is increasing. Hydrogen is a promising clean energy source with high energy density and can lead to the application of environmentally friendly technologies. However, due to difficulties in production, storage, and transportation that prevent the application of hydrogen-based eco-friendly technology, research on reforming reactions using dimethyl ether (DME) is being conducted. Unlike other hydrocarbons, DME is attracting attention as a hydrogen carrier because it has excellent storage stability and transportability, and there is no C-C bond in the molecule. The reaction between DME and steam is one of the reforming processes with the highest hydrogen yield in theory at a temperature lower than that of other hydrocarbons. In this study, a hydrogen reforming device using DME was developed and a catalyst prepared by supporting Cu in alumina was put into a reactor to find optimal hydrogen production conditions for supplying hydrogen to fuel cells while changing reaction temperature (300-500℃), pressure (5-10 bar), and steam/carbon ratio (3:1 to 5:1).

Thermal-hydraulic phenomena and heat removal performance of a passive containment cooling system according to exit loss coefficient

  • Sun Taek Lim;Koung Moon Kim;Jun-young Kang;Taewan Kim;Dong-Wook Jerng;Ho Seon Ahn
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4077-4086
    • /
    • 2024
  • The natural circulation system has been widely studied for use in various applications because of its inherent advantage. However, it has a key weakness called flow instability that makes the system unstable. Through massive previous research, the mechanisms of flow instability were analyzed, but there was an ambiguous aspect related to the effect of experimental parameters on the phenomenon. Particularly, there has been no report on the heat transfer performance of the system when flow instability phenomena were present. In this study, thermal-hydraulic phenomena of a two-phase natural circulation system that functions as a passive containment cooling system (PCCS) was investigated according to experimental parameters, namely, the temperature boundary (120-158 ℃) and exit loss coefficient (0-34.5) under atmospheric pressure conditions. The experimental results showed five different flow types in the loop. The flow modes that occurred by the interaction between flashing and boiling were classified by referring to the mass flow rate, void fraction, and visualization data. The system was more unstable when the temperature boundary conditions increased, but it was more stable when the exit loss coefficient increased. These results have only been confirmed in our research. The reason for the results is that the flow conditions are located on the boundary between Density Wave Oscillation I and the stable flow region, and that boundary does not have clear criteria. In addition, comparing the heat transfer performance of a system by heat rate can confirm the effect of flow instability on the thermal performance of the passive cooling system. As a result, the high exit loss coefficient stabilizes the system better than the low case and has similar heat removal performance.

Impact of Weather on Prevalence of Febrile Seizures in Children (소아의 열성경련에 날씨가 미치는 영향)

  • Woo, Jung Hee;Oh, Seok Bin;Yim, Chung Hyuk;Byeon, Jung Hye;Eun, Baik-Lin
    • Journal of the Korean Child Neurology Society
    • /
    • v.26 no.4
    • /
    • pp.227-232
    • /
    • 2018
  • Purpose: Febrile seizure (FS) is the most common type of seizure in children between 6 months to 5 years of age. A family history of febrile seizures can increase the risk a child will have a FS. Yet, prevalence of FS regarding external environment has not been clearly proved. This study attempts to determine the association between prevalence of FS and weather. Methods: This study included medical records from the Korea National Health Insurance Review and Assessment Service. Data were collected from 29,240 children, born after 2004, diagnosed with FS who were admitted to one of the hospitals in Seoul, Korea, between January 2009 and December 2013. During the corresponding time period, data from the Korea Meteorological Administration on daily monitoring of four meteorological factors (sea-level pressure, amount of precipitation, humidity and temperature) were collected. The relationships of FS prevalence and each meteorological factor will be designed using Poisson generalized additive model (GAM). Also, the contributory effect of viral infections on FS prevalence and weather will be discussed. Results: The amount of precipitation was divided into two groups for comparison: one with less than 5 mm and the other with equal to or more than 5 mm. As a result of Poisson GAM, higher prevalence of FS showed a correlation with smaller amount of precipitation. Smoothing function was used to classify the relationships between three variables (sea-level pressure, humidity, and temperature) and prevalence of FS. FS prevalence was correlated with lower sea-level pressure and lower humidity. FS prevalence was high in two temperature ranges (-7 to $-1^{\circ}C$ and $18-21^{\circ}C$). Conclusion: Low sea-level pressure, small amount of precipitation, and low relative air humidity may increase FS prevalence risk.

A Numerical and Experimental Study for Fry-drying of Various Sludge (슬러지 유중 건조에 대한 전산 해석 및 실험적 연구)

  • Shin, Mi-Soo;Kim, Hey-Suk;Kim, Byeong-Gap;Hwang, Min-Jeong;Jang, Dong-Soon;Ohm, Tae-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.341-348
    • /
    • 2010
  • The basic principle of fry drying process of sludge lies in the rapid pressure change of sludge material caused by the change of temperature between oil and moisture due to the difference of specific heat. Therefore, the rapid increase of pressure in drying sludge induces the efficient moisture escape through sludge pores toward heating oil media. The object of this study is to carry out a systematic investigation of the influence of various parameters associated with the sludge fry drying processes on the drying efficiency. To this end, a series of parametric experimental investigation has been made together with the numerical calculation in order to obtain typical drying curves as function of important parameters such as drying temperature, sludge diameter, oil type and sludge type. In the aspect of frying temperature, especially it is found that the operation higher than $140^{\circ}C$ was favorable in drying efficiency regardless of type of waste oil employed in this study. The same result was also noted consistently in the investigation of numerical calculation, that is, in that the sludge particle drying was efficiently made over $140^{\circ}C$ irrespective of the change of particle diameter. As expected, in general, the decrease of diameter in sludge was found efficient both experiment and numerical calculation in drying due to the increased surface area per unit volume. In the investigation of oil type and property, the effect of the viscosity of waste oil was found to be more influential in drying performance. In particular, when the oil with high viscosity, a visible time delay was noticed in moisture evaporation especially in the early stage of drying. However, the effect of high viscosity decreased significantly over the temperature of $140^{\circ}C$. There was no visible difference observed in the study of sludge type but the sewage sludge with a slightly better efficiency. The numerical study is considered to be a quite useful tool to assist in experiment with more detailed empirical modeling as further work.

Effect of Pressure on HCl Absorption Behaviors of a K-based Absorbent in the Fixed Bed Reactor (고정층 반응기에서 K-계열 흡수제의 압력에 따른 HCl 흡수 거동 연구)

  • Kim, Jae-Young;Park, Young Cheol;Jo, Sung-Ho;Ryu, Ho-Jung;Baek, Jeom-In;Park, Yeong Seong;Moon, Jong-Ho
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.165-172
    • /
    • 2013
  • In this study, the hydrogen chloride removal using K-based dry sorbents ($K_2CO_3/Al_2O_3$, KEPRI, Korea) was studied with varying the pressure in a fixed bed reactor (15 cm tall bed with 0.5 cm I.d.). Working temperature was $400^{\circ}C$ and feed gas concentration was 750 ppm (HCl vol%, $N_2$ balance). The chloride sorption capacity of sorbent increases with increasing pressure (1, 5, 10, 15 and 20 bar). Also, after forming KCl crystal by reaction with $K_2CO_3$ and HCl, owing to the strong bonding energy, sorbent regeneration was practically impossible. Its optical, physical and chemical characterizations were evaluated by SEM, EDAX, BET, TGA and XRD. At $400^{\circ}C$ and 20 bar condition, working condition for the dehalogenation process after gasification, K-based dry sorbent showed high HCl sorption capacity and HCl/$N_2$ separation performances comparing with Ca-based and Mg-based dry sorbents.

Thermal-Hydraulic Research Review and Cooperation Outcome for Light Water Reactor Fuel (경수로핵연료 열수력 연구개발 분석 및 연산학 협력 성과)

  • In, Wang Kee;Shin, Chang Hwan;Lee, Chi Young;Lee, Chan;Chun, Tae Hyun;Oh, Dong Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.815-824
    • /
    • 2016
  • The fuel assembly for pressurized water reactor (PWR) consists of fuel rod bundle, spacer grid and bottom/top end fittings. The cooling water in high pressure and temperature is introduced in lower plenum of reactor core and directed to upper plenum through the subchannel which is formed between the fuel rods. The main thermal-hydraulic performance parameters for the PWR fuel are pressure drop and critical heat flux in normal operating condition, and quenching time in accident condition. The Korea Atomic Energy Research Institute (KAERI) has been developing an advanced PWR fuel, dual-cooled annular fuel and accident tolerant fuel for the enhancement of fuel performance and the localization. For the key thermal-hydraulic technology development of PWR fuel, the KAERI LWR fuel team has conducted the experiments for pressure drop, turbulent flow mixing and heat transfer, critical heat flux(CHF) and quenching. The computational fluid dynamics (CFD) analysis was also performed to predict flow and heat transfer in fuel assembly including the spent fuel assembly in dry cask for interim repository. In addition, the research cooperation with university and nuclear fuel company was also carried out to develop a basic thermal-hydraulic technology and the commercialization.