• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.043 seconds

Antioxidative and antimicrobial activities of Oenothera biennis extracted by different methods (추출방법을 달리한 달맞이꽃 추출물의 항산화 및 항균 활성)

  • Kim, Jin Hak;Lee, Shin-Ho
    • Food Science and Preservation
    • /
    • v.23 no.2
    • /
    • pp.233-238
    • /
    • 2016
  • A effect of extraction methods, including stirrer extraction method (SE), ultrasonification extraction method (USE), reflux extraction method (RE), autoclave extraction (AE) and low temperature high pressure extraction (LE) method on the antioxidative and antimicrobial activities of ethanol extracts of Oenothera biennis was investigated. The extraction yield (46.33%), total polyphenol (463.05 mg GAE/g) and flavonoid (71.71 mg RHE/g) content of Oenothera biennis extract obtained by RE were higher than those from other extraction methods. The antimicrobial activity of Oenothera biennis extract was only observed against Bacillus cereus among other tested organisms (Bacillus cereus, Staphylococcus aureus, Escherichia coli and Salmonella Typhimurium). Oenothera biennis obtained by RE showed the best DPPH radical scavenging ability (74.40%), ABTS radical scavenging ability (65.29%), reducing power (1.370 ($OD_{700}$)) and ferrous ion chelating ability (90.14%) compared with other tested extraction methods tested. The RE method was the most efficient method for extracting crude antioxidant and antimicrobial substances from Oenothera biennis. These results suggested that Oenothera biennis obtained by RE could be used as a bioactive and functional material in the food industry.

LPG Cylinder Leak Experiment from Multiple Leak Scenarios (누출종류에 따른 LP가스용기 누출량 실증 실험)

  • Lee, Minkyung;Lee, Kang-Ok;Kim, Young Gyu
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.61-66
    • /
    • 2019
  • Unlike NG supplied through pipes, LPG is mainly used for independent storage of cylinders or small storage tanks. As LPG is widely used in islands and underdeveloped areas, accidents due to neglect of safety management are high. Houses and businesses that have LPG accidents are likely to be damaged due to relatively high population density. Therefore, the necessity of strengthening the safety management of LPG is constantly raised. Accordingly, in 1996, Korea Gas Safety Corporation conducted an LPG leak test. In this study, based on the 96-year experiment, the gas leakage measurement of LPG vessels was conducted by adding several conditions such as outside temperature and pipe condition. Through this, the trend of leakage for various scenarios of LPG leakage was examined. In the case of a gas leak, when the article which may affect the pressure such as a regulator is not connected, the leakage amount is greatly changed by the outside air temperature, and when the regulator is fastened, the influence of the outlet pressure is large. It is expected that the experiment can be used as basic data for determining gas accidents and leakages that may occur later.

The relations between second-stage temperatures and gases partial pressures at the stainless steel high vacuum chamber by cryogenic pumping (크라이오 펌프를 이용한 스테인레스 스틸 고진공용기 배기에서 2차 냉각판 온도와 용기 내부의 기체 부분압 관계)

  • Hong S. S.;Lim J. Y.;Shin Y. H.;Chung K. H.;Arakawa Ichiro
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.4
    • /
    • pp.139-144
    • /
    • 2004
  • Recently, the importance of clean vacuum and partial pressure measurement of gas species has been increased in the vaccum process. In this study, the partial pressures of $H_2$, He, C, N, $O_2$, $H_2O $, Ar/2, $N_2$(CO), Ar, $CO_2$ were measured by residual gas analyzer according to temperature of cryogenic pump which is used to clean vacuum generation and compared. The experimental results showed that the cryopanel temperature was reached to 12K after 72 minutes of pumping and after 25hours, the partial pressures in percent were 24.9 %, 6.6%, 5.5 %, 2.2 %, 3.8%, 30.7%, 6.5%, 6.1 %, 5.5%, 8.2% for $H_2$, He, C, N, $O_2$, $H_2O $, Ar/2, $N_2$, Ar, $CO_2$ respectively. The dominant gases were $H_2$ and $H_2O $, and the partial pressures were relatively high compare to other gases.

Feasibility study of a dedicated nuclear desalination system: Low-pressure Inherent heat sink Nuclear Desalination plant (LIND)

  • Kim, Ho Sik;NO, Hee Cheon;Jo, YuGwon;Wibisono, Andhika Feri;Park, Byung Ha;Choi, Jinyoung;Lee, Jeong Ik;Jeong, Yong Hoon;Cho, Nam Zin
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.293-305
    • /
    • 2015
  • In this paper, we suggest the conceptual design of a water-cooled reactor system for a low-pressure inherent heat sink nuclear desalination plant (LIND) that applies the safety-related design concepts of high temperature gas-cooled reactors to a water-cooled reactor for inherent and passive safety features. Through a scoping analysis, we found that the current LIND design satisfied several essential thermal-hydraulic and neutronic design requirements. In a thermal-hydraulic analysis using an analytical method based on the Wooton-Epstein correlation, we checked the possibility of safely removing decay heat through the steel containment even if all the active safety systems failed. In a neutronic analysis using the Monte Carlo N-particle transport code, we estimated a cycle length of approximately 6 years under 200 $MW_{th}$ and 4.5% enrichment. The very long cycle length and simple safety features minimize the burdens from the operation, maintenance, and spent-fuel management, with a positive impact on the economic feasibility. Finally, because a nuclear reactor should not be directly coupled to a desalination system to prevent the leakage of radioactive material into the desalinated water, three types of intermediate systems were studied: a steam producing system, a hot water system, and an organic Rankine cycle system.

A Study on the Variable Condition Debinding Process in Supercritical CO2 for Removing Binder from Thick Ceramic Injection Molded Parts (두꺼운 세라믹 사출성형체로부터 효율적인 결합제 제거를 위한 초임계 CO2 가변조건 탈지공정 연구)

  • Kim, Hyung-Kun;Yim, Joon-Hyuk;Kim, Hyung-Soo;Lim, Jong-Sung
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.155-161
    • /
    • 2012
  • The purpose of this study is to remove paraffin wax binder effectively from powder injection molded part using supercritical fluids in powder injection molding process. For a thin powder injection molded part about 1-2 mm thickness, paraffin wax binder can be removed rapidly without any defect by traditional supercritical extraction process which has fixed high temperature and pressure condition. But, for a thick powder injection molded part, there are limitations in removing paraffin wax binder by the fixed high process condition because crack occurs at the beginning step. Therefore, here we studied variable condition debinding process that starts with mild process condition at the beginning step and then increase the process conditions simultaneously at each step. To find out the initial process condition that has the highest extraction yield without any defect for each sample thickness, we investigated various supercritical debinding conditions using 1-4 mm thickness ceramic injection molded sample. By using the variable condition debinding process that starts with the initial process condition at the first step and then increasing process conditions simultaneously at each step (temperature from 333.15 to 343.15 K, pressure from 12 to 27 MPa, and $CO_2$ flow rate from 1.5 to 10 L/min), over 95% of paraffin wax binder was removed from the 4 mm thick (10 mm diameter) ceramic injection molded disk samples within 5 hours.

Characteristics of Coal Methanation in a Hydrogasifier (수소가스화기에서 석탄의 메탄화 반응 특성)

  • Lee, S.H.;Yoon, S.J.;Choi, Y.C.;Kim, J.H.;Lee, J.G .
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.631-635
    • /
    • 2006
  • To investigate the characteristics of substitute natural gas (SNG) production from direct coal methanation, the continuous lab-scale entrained flow hydrogasifier (I.D. : 0.025 m, Height : 1.0 m) was used in this experiment. The hydrogasification system consisted of high pressure gas handling system, high pressure coal feeder, entrained flow hydrogasifier, and unreacted char separator. The experiment was performed at the various conditions of reaction temperature ($600{\sim}800^{\circ}C$), $H_2$/coal ratio (0.2~0.4), and coal feed rate (0.8~2.5 g/min). Although it was shown that carbon conversion was different trends with coals from the methanation results for 6 sample coals, the carbon conversion increased with increasing reaction temperature. And it increased with increasing H2/coal ratio, whereas the concentration of CH4 decreased. Also. the carbon conversion increased with the carbon content of coal sample and had a maximum value at volatile matter content of 35 wt%.

Simulation of reactivity-initiated accident transients on UO2-M5® fuel rods with ALCYONE V1.4 fuel performance code

  • Guenot-Delahaie, Isabelle;Sercombe, Jerome;Helfer, Thomas;Goldbronn, Patrick;Federici, Eric;Jolu, Thomas Le;Parrot, Aurore;Delafoy, Christine;Bernaudat, Christian
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.268-279
    • /
    • 2018
  • The ALCYONE multidimensional fuel performance code codeveloped by the CEA, EDF, and AREVA NP within the PLEIADES software environment models the behavior of fuel rods during irradiation in commercial pressurized water reactors (PWRs), power ramps in experimental reactors, or accidental conditions such as loss of coolant accidents or reactivity-initiated accidents (RIAs). As regards the latter case of transient in particular, ALCYONE is intended to predictively simulate the response of a fuel rod by taking account of mechanisms in a way that models the physics as closely as possible, encompassing all possible stages of the transient as well as various fuel/cladding material types and irradiation conditions of interest. On the way to complying with these objectives, ALCYONE development and validation shall include tests on $PWR-UO_2$ fuel rods with advanced claddings such as M5(R) under "low pressure-low temperature" or "high pressure-high temperature" water coolant conditions. This article first presents ALCYONE V1.4 RIA-related features and modeling. It especially focuses on recent developments dedicated on the one hand to nonsteady water heat and mass transport and on the other hand to the modeling of grain boundary cracking-induced fission gas release and swelling. This article then compares some simulations of RIA transients performed on $UO_2$-M5(R) fuel rods in flowing sodium or stagnant water coolant conditions to the relevant experimental results gained from tests performed in either the French CABRI or the Japanese NSRR nuclear transient reactor facilities. It shows in particular to what extent ALCYONE-starting from base irradiation conditions it itself computes-is currently able to handle both the first stage of the transient, namely the pellet-cladding mechanical interaction phase, and the second stage of the transient, should a boiling crisis occur. Areas of improvement are finally discussed with a view to simulating and analyzing further tests to be performed under prototypical PWR conditions within the CABRI International Program. M5(R) is a trademark or a registered trademark of AREVA NP in the USA or other countries.

Study on the Fuel Decomposition Characteristics and Coke Formation by Type of Endothermic Fuel and Method of Catalyst Molding (흡열연료 종류와 촉매 성형 방법에 따른 분해특성과 코크 생성에 관한 연구)

  • Lee, Tae Ho;Kang, Saetbyeol;Kim, Sung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.611-619
    • /
    • 2019
  • This study was carried out to investigate fuel decomposition characteristics and coke formation according to types of endothermic fuels and methods of catalyst molding. Methylcyclohexane (MCH), n-dodecane, and exo-tetrahydrodipentadiene (exo-THDCP) were used as the endothermic fuels. As a catalyst, USY720 supported with platinum was used. It was manufactured by only using pressure to disk-type, or pelletized with a binder and a silica solution. The characteristics of the catalysts according to the molding method were analyzed by X-ray diffraction analysis, scanning electron microscopy, nitrogen adsorption-desorption isotherm, and ammonia temperature programmed desorption analysis. The reaction was carried out under conditions of high temperature and high pressure ($500^{\circ}C$, 50 bar) in which the fuel could exist in a supercritical state. The product was analyzed by gas chromatograph/mass spectrometer and the coke produced by the catalyst was analyzed by thermogravimetric analyzer. After the reaction, the composition of the products varied greatly depending on the structure of the fuel. In addition, the crystallinity and surface properties of the catalysts were not changed by the method of catalyst molding, but the changes of the acid sites and the pore characteristics were observed, which resulted in changes in the amount and composition of products and coke.

Room Temperature Imprint Lithography for Surface Patterning of Al Foils and Plates (알루미늄 박 및 플레이트 표면 미세 패터닝을 위한 상온 임프린팅 기술)

  • Tae Wan Park;Seungmin Kim;Eun Bin Kang;Woon Ik Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.65-70
    • /
    • 2023
  • Nanoimprint lithography (NIL) has attracted much attention due to its process simplicity, excellent patternability, process scalability, high productivity, and low processing cost for pattern formation. However, the pattern size that can be implemented on metal materials through conventional NIL technologies is generally limited to the micro level. Here, we introduce a novel hard imprint lithography method, extreme-pressure imprint lithography (EPIL), for the direct nano-to-microscale pattern formation on the surfaces of metal substrates with various thicknesses. The EPIL process allows reliable nanoscopic patterning on diverse surfaces, such as polymers, metals, and ceramics, without the use of ultraviolet (UV) light, laser, imprint resist, or electrical pulse. Micro/nano molds fabricated by laser micromachining and conventional photolithography are utilized for the nanopatterning of Al substrates through precise plastic deformation by applying high load or pressure at room temperature. We demonstrate micro/nanoscale pattern formation on the Al substrates with various thicknesses from 20 ㎛ to 100 mm. Moreover, we also show how to obtain controllable pattern structures on the surface of metallic materials via the versatile EPIL technique. We expect that this imprint lithography-based new approach will be applied to other emerging nanofabrication methods for various device applications with complex geometries on the surface of metallic materials.

Properties of $Fe_2O_3$-doped $SnO_2$ Oxides for CO Sensor (CO 센서용 $Fe_2O_3$를 첨가한 $SnO_2$ 산화물의 특성)

  • Bae, In-Soo;Lee, Hyun-Kyu;Hong, Kwang-Joon;Lee, Woo-Sun;Park, Jin-Seoung
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.222-231
    • /
    • 2001
  • The material properties of $SnO_2$ were investigated as a function of the amount of $Fe_2O_3$, the partial pressure of oxygen, the concentration of CO gas, and temperature. $Fe_2O_3$-doped $SnO_2$ thick films were prepared by the screen printing technique on alumina substrate. The specimens sintered at $700^{\circ}C$ for 6 hours showed little difference of the grain size and narrow distribution with the content of $Fe_2O_3$. The electrical conductance of undoped $SnO_2$ is high at low firing temperature and at low partial pressure of oxygen. The electrical conductance of $Fe_2O_3-$-doped $SnO_2$ is increased with measurement temperature, but decreased with the content of $Fe_2O_3$. The dependence of oxygen partial pressure is decreased with dopant addition. The highest sensitivity and the good properties of response speed and repeatability for CO gas were observed on the specimen with 0.1 mol% $Fe_2O_3$ at $350^{\circ}C$.

  • PDF