• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.031 seconds

Baking analysis of the KSTAR vacuum vessel and plasma facing components (KSTAR 진공용기 및 플라즈마 대향 부품에 대한 베이킹 해석)

  • 이강희;임기학;허남일;인상렬;조승연
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4A
    • /
    • pp.397-402
    • /
    • 1999
  • The base pressure of the vacuum vessel of KSTAR tokamak is to be ultra high vacuum, $10^{-6}\sim10^{-7}Pa$, to produce a clean plasma with low impurity concentrations. For this purpose, vessel and plasma facing components need to be baked up to $250^{\circ}C$, $350^{\circ}C$ respectively to remove impurities from the plasma-material interaction surfaces. Here the required heating power to be supplied for baking has been calculated according to pre-assumed different temperature profiles (baking scenario and proper baking plan for KSTAR tokamak has been proposed. Mass flow rate and temperature of nitrogen gas for baking has also been calculated.

  • PDF

An Experimental Analysis on the Maximum Allowable PV Value of Oilless Composite Bearing Materials (오일레스 복합계 베어링재의 최대허용 PV값 측정에 관한 실험적 고찰)

  • 공호성;윤의성;전기수;송광호
    • Tribology and Lubricants
    • /
    • v.11 no.1
    • /
    • pp.27-36
    • /
    • 1995
  • Maximum allowable PV values of oilless composite bearing materials (70% epoxy-resin/30% Graphite) were measured and compared at various types of test rigs that have different contact geometry and the operating conditions. Test results showed that material failure was mainly characterized by the sharp increase in both coefficient of friction and surface temperature, and different PV values were measured under different Contact geometry. The discrepancy in measurement of PV values was analyzed in the light of theoretical frictional heating analysis. Results show that surface temperature rise depends on its contact geometry, and PV values could be overestimated in the testing conditions of high sliding velocity. Test data of different contact geometry were normalized by using a normalized contact pressure and sliding velocity; it showed a good correlation. This work suggests that normalized PV values could be more effective in evaluating bearing materials than conventional PV values for a design parameter of journal bearings.

Protonic Conduction Properties of Nanostructured Gd-doped CeO2 at Low Temperatures

  • Park, Hee Jung;Shin, Jae Soo;Choa, Yong Ho;Song, Han Bok;Lee, Ki Moon;Lee, Kyu Hyoung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.527-530
    • /
    • 2015
  • The electrical properties of nanostructured Gd-doped $CeO_2$ (n-GDC) as a function of temperature and water partial-pressure were investigated using ac and dc measurements. For n-GDC, protonic conductivity prevails under wet condition and at low temperatures (< $200^{\circ}C$), while oxygen ionic conductivity occurs at high temperatures (> $200^{\circ}C$) under both dry and wet conditions. The grain boundaries in n-GDC were highly selective, being conductive for protonic transport but resistive for oxygen ionic transport. The protonic conductivity reaches about $4{\times}10^{-7}S/cm$ at room temperature (RT).

Flexible Display ; Low Temperature Processes for Plastic LCDs

  • Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.185-189
    • /
    • 2002
  • Flexible displays such as plastic based LCDs and organic light-emitting diodes for mobile communication devices have been researched and developed at KETI in KOREA since 1997. The Plastic film substrate has so poor thermal tolerance and non-rigidness that the fabrication of active devices and panel assembly have to perform at low temperature and pressure. In addition, high thermal expansion of the substrate is also a serious problem for reliable metallic film deposition. In this paper, we investigated particularly on the fundamental characteristics of various plastic substrates and then, suggested novel methods that improve the fabrication processes of plastic LCD panel. In order to maintain stable substrate surface and uniform cell gap during panel assembly, we utilized newly-invented iii and vacuum chuck. Electro-optical characteristics of fabricated plastic LCD are better than or equivalent to those of typical glass based LCDs though it is thinner, lighter-weight and more robust.

  • PDF

Deintercalation and Thermal Stability of Na-graphite Intercalation Compounds

  • Oh, Won-Chun
    • Carbon letters
    • /
    • v.2 no.1
    • /
    • pp.22-26
    • /
    • 2001
  • Na alloyed graphite intercalation compounds with stage 1 and 2 were synthesized using the high temperature and pressure technique. Thermal stability and staging transitions of the compounds were investigated depending on heating rates. The thermal stability and temperature dependence of the deintercalation compounds were characterized using differential scanning calorimeter (DSC) analyzer. Enthalpy of formations were confirmed at temperatures between 25 and $500^{\circ}C$, depending on the various heating rates. The structure ions and interlayer spaces of the graphite were identified by X-ray diffraction (XRD). Diffractograms of stages with non-integral (00l) values were obtained in the thermal decomposition process, and stacking disorder defects and random stage modes were observed. The average value of the interlayer C-C bond lengths were found approximately $2.12{\AA}$ and $1.23{\AA}$ from the diffractions. Based on the stage transition, the degree of the deintercalaton has a inverse-linear relationship against the heating rate.

  • PDF

Performance Analysis for CO2 System with Sub-cooling loop (과냉 회로를 갖는 이산화탄소 냉동시스템에 대한 성능 해석)

  • Kim, Jin-Man;Ko, Sung-Gyu;Kim, Moo-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.723-728
    • /
    • 2007
  • In order to evaluate the performance of carbon dioxide cycle with a sub-cooling loop. a simulation system was developed to predict the steady state of $CO_2$ trans-critical cycle. Mathematical models are derived to describe the relationships between the system's coefficient of performance and other operating parameters The mathematical models are based entirely on the basic mass and energy conservation law and thermodynamic and transport properties of carbon dioxide A parametric study has been conducted in order to investigate the effect of sub-cooling loop and various operating conditions on the cycle performance. An optimal mass fraction of a refrigerant flowing through sub-cooling cycle existed for the given evaporating temperature, high pressure and air inlet temperature through gas cooler.

Effects of Packing Pressure and Time on Injection Molding of Plastic Micro-channel Plates (플라스틱 마이크로 채널 기판 사출성형 시 보압의 영향)

  • Woo, Sang-Won;Park, Si-Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.224-229
    • /
    • 2016
  • Recently, polymeric micro-fluidic biochips with numerous micro patterns on the surface were fabricated by injection molding for realizing low-cost mass production of devices. To evaluate the effects of process parameters on large-scale micro-structure replication, a $50{\times}50mm^2$ tool insert with surface structures having a patterns of trapezoidal shapes (height: $30{\mu}m$) was employed. During injection molding, PMMA was used; packing phase parameters and mold temperature were investigated. The replicated surface textures were quantitatively characterized by confocal laser microscopy with 10-nm resolution. The degree of replication at low mold temperatures was found to be higher than that at high mold temperature at the beginning of the packing stage. Thereafter, the degree of replication increased to a greater extent at higher mold temperatures; application of higher mold temperatures improved the degree of replication.

Spray Characteristics of Dimethyl Ether(DME) Fuel Compared to Various Diesel Fuels

  • Lee, Seang-Wock;Kim, Duk-Sang;Cho, Yong-Seok
    • Journal of ILASS-Korea
    • /
    • v.13 no.2
    • /
    • pp.65-72
    • /
    • 2008
  • It is recognized that alternative fuel such as dimethyl ether (DME) has better combustion polluting characteristics than diesel fuel, even though the cetane number of DME is almost the same as that of diesel. Characteristics of DME spray were observed experimentally under various ambient conditions using a constant volume chamber and a common-rail injection system. N-dodecane and LPG fuel sprays were also observed under same conditions of DME spray. Using spray images from backlight scattering and Mie scattering, characteristics of fuel sprays such as penetration and spray volume were visualized and quantitatively measured. The measurements showed that the penetration of early period decreased remarkably, because evaporation of alternative fuels became prosperous by the influence of flash boiling phenomenon under the condition of the low temperature and pressure compared with n-dodecane. The penetration of DME and LPG spray received the influence of temperature more largely in comparison with low density, because the specific surface area increased by atomizing in high density.

  • PDF

THE PERFORMANCE OF CLAY BARRIERS IN REPOSITORIES FOR HIGH-LEVEL RADIOACTIVE WASTE

  • Pusch, Roland
    • Nuclear Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.483-488
    • /
    • 2006
  • Highly radioactive waste is placed in metal canisters embedded in dense clay termed buffer. The radioactive decay is associated with heat production, which causes degradation of the buffer and thereby time-dependent loss of its waste-isolating potential. The buffer is prepared by compacting air-dry smectite clay powder and is initially not fully water saturated. The evolution of the buffer starts with slow wetting by uptake of water from the surrounding rock followed by a long period of exposure to heat, pressure from the rock and chemical reactants. It can be described by conceptual and theoretical models describing processes related to temperature (T), hydraulic (H), mechanical (M) and chemical performance (C). For temperatures below 90 C more than 75 % of the smectite will be preserved for 100 000 years but cementation may reduce the excellent performance of the buffer to a yet not known extention.

The Fabrication of Low Cost High Temperature Superconducting Tape (저비용 고온초전도 선재 제조 연구)

  • 한상철;성태현;한영희;이준성;이영우;정년호;김상준
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.85-88
    • /
    • 2000
  • Cu-free Bi-Sr-Ca-O powder mixtures were screen-printed on Cu tapes and heat-treated at 850-$870^{\circ}C$ for several minutes in air, oxygen, nitrogen and low oxygen pressure. Cu-free precursors were composed of Bi_{x}$SrCaO_{y}$ (x=1.2-2). In order to obtain the optimum heat-treatment condition, we studied on an effect of the precursor composition, the printing thickness and the heat-treatment atmosphere on the superconducting properties of Bi2212 films and the reaction mechanism of their rapid formation. Microstructures and phases of thick films were analyzed by optical microscope and XRD. The electric properties of superconducting films were examined by the four probe method. At heat-treatment temperature, the thick films were in a partially molten state by liquid reaction between CuO in the oxidized copper tape and the precursors which were printed on Cu tapes.

  • PDF