• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.037 seconds

Performance Characteristics for Off-design Operation of Micro Gas Turbines (마이크로 가스터빈의 탈설계 운전 성능특성)

  • Kim, T.S.;Hwang, S.H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.3 s.24
    • /
    • pp.39-47
    • /
    • 2004
  • Micro gas turbines are designed with low turbine inlet temperature and pressure ratio. To overcome the efficiency defect of the simple cycle, adoption of the recuperator is an inevitable choice. In addition to the design performance, we should also pay attention to the off-design performance of gas turbines since they usually operate at part-load conditions lot a considerable amount of their lifetime. This study analyzes off-design performance characteristics of micro gas turbines and addresses the importance of the recuperation process doting the part load operation. Comparative analyses have been performed to evaluate the part load performance differences among various design and operating options : simple vs recuperative cycles, single vs two shaft configurations, various operating strategies for the single shaft configuration, and current vs advanced engines. Major finding is that maintaining high turbine exhaust temperature is crucial for efficient operation of micro gas turbines.

Synthesis of nanometric tungsten powders by solid state combustion method (고상연소반응법에 의한 나노텅스텐분말의 합성)

  • H.H. Nersisyan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.93-93
    • /
    • 2003
  • Tungsten and tungsten heavy alloys have widespread application as radiation shielding devices and heavy duty electrical contacts. High density and good room temperature mechanical properties have generated interest in evaluating tungsten and tungsten alloys as kinetic energy penetrators against armor. Nowdays ultra fine-grained tungsten powders are in great interest because higly dense structures can be obtained at low temperature, pressure and lower sintering time. Several physical md chemical methods are available for the synthesis of nanometric metal Powders: ball milling, laser abalation, vapor condensation, chemical precipitation, metallic wire explosion i.e. However production rates of the above mentioned methods are low and further efforts are needed to find out large-scale synthesis methods. From this point of view solid state combustion method ( known as SHS) represents undoubted interest.

  • PDF

The positive bubble effect in liquid $SF_6$ (액체 $SF_6$의 정기포현상(正氣泡現像))

  • Choi, Eun-Hyuck;Lee, Jae-Hyuck;Park, Kwang-Seo;Kim, Jong-Whan;Kim, Lee-Kook;Park, Won-Goo;Lee, Kwang-Sik
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.151-154
    • /
    • 2005
  • In this paper the experiments of insulation characteristics by temperature change of $SF_6$ gas and liquid $SF_6$ in model GIS(Gas Insulated Switchgear) were described. From this results, the breakdown voltage was increased with a drop of temperature and an increase of the inner pressure in model GIS. The ability of insulation in liquid $SF_6$ was higher than that of the highly pressurized $SF_6$ gas. A liquid $SF_6$ discharge characteristics was caused by bubble formed evaporation of liquid $SF_6$ and bubble caused by high electric emission. It is considered that these result are fundamental data for electric insulation design of superconductor and cryogenic application machinery which will be studied and developed in the future.

  • PDF

MULTI-SCALE SIMULATION FOR DESIGN OF A CATALYTIC MULTI-TUBULAR REACTOR (다관식 촉매 반응기 설계를 위한 multi-scale simulation)

  • Shin Sang-Baek;Im Ye-Hoon;Ha Kyoung-Su;Urban Zbigniew;Han Sang-Phil
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.49-53
    • /
    • 2005
  • This paper presents a multi-scale hybrid simulation for the design of a catalytic multi-tubular reactor with high performance. The multi-tubular reactor consists of shell and a large number of tubes in which various catalytic chemical reactions occur. To consider fluid dynamics in the shell-side and kinetics in the tube-side at the same time, commercial CFD package and process simulation tool are coupled. This hybrid approach allowed us to predict many kinds of meaningful results such as tube center temperature profile, heat transfer coefficients on the tube wall, temperature rise of cooling medium, pressure drop through shell and tube side, concentration profile of each chemical species along the tube, and so on., and to achieve the optimal reactor design.

  • PDF

Study on the Address Discharge Characteristics for the Improvement of the Mis-firing Problem in AC PDP (AC PDP의 오방전 개선을 위한 어드레스 방전 특성 연구)

  • Jeon, Won-Jae;Kim, Dong-Hun;Lee, Seok-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1151-1156
    • /
    • 2009
  • Unstable sustain discharges can occur at the bottom cells of the panel at high temperature. To solve this problem, the wall charge variation during an address period was investigated. A test panel of 7.5 inch XGA level was used and one green cell was measured. In order to realize operating condition equal to that of the bottom cells of 50 inch panel, the addressing stress pulses are applied. It seems that the resultant wall charge loss during address period increased with increase of stress time, temperature, pressure and Xe %. Wall charge loss increases with potential difference between scan electrode and address electrode, therefore wall charge loss can be minimized by the increase of scan voltage during address period.

A Study on the Strength Evaluation of Thin Wall Molding (박육성형제품의 강도평가에 관한연구)

  • Kim, Ok-Rae;Woo, Chang-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.490-494
    • /
    • 2011
  • In this paper, using by rapid heating and cooling systems for injection molding and temperatures to changes. In the process of molding temperature and pressure inside the mold was found. In addition, the tensile strength of test specimens were molded, mechanical properties of injection molded parts were identified on mold temperature. Copper could withstand more tensile force than NAK. Therefore, it can be concluded that materials with high heat conductivity must be used in thin walled products.

A Study for Energy Separation of Vortex Tube using Air Supply System (I) - the effect of diameter of cold end orifice - (공기공급 시스템에 적용되는 Vortex Tube의 에너지 분리특성에 관한 연구(I) -저온출구 orifice의 직경변화에 의한 영향-)

  • 이병화;추홍록;상희선
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.9-18
    • /
    • 1998
  • The vortex tube is a simple device for separating a compressed gaseous fluid stream into two flows of high and low temperature without any chemical reactions. Recently, vortex tube is widely used to local cooler of industrial equipments and air supply system. The phenomena of energy separation through the vortex tube was investigated experimentally. This study is focused on the effect of the diameter of cold end orifice diameter on the energy separation. The experiment was carried out with various cold end orifice diameter ratio from 0.22 to 0.78 for different input pressure and cold air flow ratio. The experimental results were indicated that there are an optimum diameter of cold end orifice for the best cooling performance. The maximum cold air temperature difference was appeared when the diameter ratio of the cold end orifice was 0.5. The maximum cooling capacity was obtained when the diameter ratio of the cold end orifice was 0.6 and cold air flow ratio was 0.7.

  • PDF

Plasma Characterization of Facing Target Sputter System for Carbon Nitride Film Deposition

  • Lee, Ji-Gong;Lee, Sung-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.3
    • /
    • pp.98-103
    • /
    • 2004
  • The plasma properties in the facing target sputtering system during carbon nitride film deposition have been investigated. The ionized nitrogen species of the deposited films increased with increasing discharge current and were independent of the nitrogen pressure. The nitrogen content in the films did not vary significantly with the variation of nitrogen gas. The electron temperature was high close to that in the inter-cathode region, reduced as the electrons moved away from the most intense region of magnetic confinement and increased again outside this region. Calculations based on the film composition showed that the ion to carbon atom ratio at the substrate was about 50 and that the ratio between the ionized and neutral nitrogen molecules was about 0.25.

Fabrication and Reliability Properties of Ni-Cr Alloy Thin Film Resistors (Ni-Cr계 합금을 이용한 박막저항의 제작 및 신뢰성)

  • Lee, Boong-Joo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.57-62
    • /
    • 2008
  • From the progressing results, it was found that thin film using 52 wt% Ni - 38 wt% Cr - 3 wt% Al - 4 wt% Mn - 3 wt% Si target has good characteristics for low TCR (temperature coefficients of resistance) and high resistivity. The optimum sputtering condition was DC 250 W, 5 mtorr, and 50 sccm and the proper annealing condition was $350^{\circ}C$/3.5 hr in air atmosphere. At these fabricated conditions, thin film resistors with TCR values of less than ${\pm}10ppm/^{\circ}C$ were obtained. The TCR of the packaged-samples made at proper fabrication conditions was $-3{\sim}15ppm/^{\circ}C$ after the thermal cycling and $-20{\sim}180ppm/^{\circ}C$ after PCT (pressure cooker test), we could confirm reliability for the thin film resistor and find the need for enduring research about packaging method.

High Molecular Weight Poly(L-lactide) Synthesized in Supercritical Fluids

  • Kim, Soo-Hyun
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.210-211
    • /
    • 2006
  • A series of L-LA polymerizations initiated by $Sn(Oct)_{2}\;([LA]_{0}/[Sn]_{0}=200)$ were carried out in scR22 at $130^{\circ}C$ and 300 bar, where $[LA]_{0}$ is the initial L-lactide concentration and $[Sn]_{0}$ is the initial $Sn(Oct)_{2}$ concentration. The reaction time dependences of monomer conversion and PLLA MW improved. The monomer conversion and PLLA MW increased with increasing reaction time. The effect of temperature on monomer conversion and PLLA MW was investigated in a series of polymerizations conducted at temperatures ranging from 90 to $150^{\circ}C$ and at a constant pressure of 200 bar. In all of these experiments, the ratio of monomer to R22 concentration was held constant at 12.4 wt.-%. Increasing the reaction temperature from 90 to $130^{\circ}C$ resulted in increased monomer conversion from 11.5 to 72.2 %.

  • PDF