• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.031 seconds

A study on the accelerated life test model for life prediction of piston assemblies (피스톤 조립체의 수명예측을 위한 가속실험모델에 관한연구)

  • Lee, Yong-Bum;Kim, Hyoung-Eui;Song, Kyu-Joe;Kim, Tae-Suk
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2006.05a
    • /
    • pp.116-125
    • /
    • 2006
  • Piston assemblies, which are key components of hydraulic high pressure pumps & motors, are major failure products operating at high pressure and high speed, and the main failure mode is wearout of the shoe surface. To predict the actual life of piston assemblies. we require to find out the most sensitive parameters and establish related empirical formula. In this study, we analyzed the life of piston and shoe assemblies in accordance with variation of speed, pressure, and temperature to reduce the life test time, then analyzed the result of combined accelerated life test which is applied by high speed, speed pressure, and high temperature simultaneously, and finally developed combined accelerated life test model.

  • PDF

High Pressure X-Ray Diffraction Study on a Goethite using Synchrotron Radiation (방사광을 이용한 괴타이트에 대한 고압 X-선 회절연구)

  • 김영호;이지은
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.75-81
    • /
    • 1997
  • High pressure X-ray diffraction study was carried out on a natural FeO(OH)-goethite to investigate its compressibility at room temperature. Energy dispersive X-ray diffraction method was employed using Mao-Bell type diamond anvil cell with Synchrotron Radiation. MgO powder was compressed together with goethite for the high pressure determinations. Bulk modullus was determined to be 147.9 GPa by the Birch-Murnaghan equation of state under assumption of K0' of 4. This value was subjected to compare with its structural analogs and related materials.

  • PDF

Corrosion Characteristics of Corrosion-Resistant Metal with Different Composition Ratios of Acetic Acid and Acetonitrile at High Temperature and Pressure (고온 및 고압조건에서 아세트산과 아세토나이트릴의 성분비에 따른 부식저항성 금속의 부식특성)

  • Hyun-Kyu Hwang;Dong-Ho Shin;Seung-Jun Lee;Seong-Jong Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.154-165
    • /
    • 2024
  • Acetic acid and acetonitrile produced in the chemical process of petrochemical plants are used at high temperatures and pressures. They are exposed to harsh corrosive environments. The present investigation aimed to evaluate corrosion characteristics of metals with excellent corrosion resistance by performing immersion and electrochemical experiments with different composition ratios of acetic acid and acetonitrile in a high-temperature and high-pressure environment. Results of immersion experiment revealed that as acetic acid concentration increased, surface damage and corrosion also increased. In immersion experiments under all conditions, super austenitic stainless steel (UNS N08367) had the best corrosion resistance among various metals. The maximum damage depth under the most severe immersion conditions was observed to be 4.19 ㎛, which was approximately 25.25 ㎛ smaller than that of highly damaged stainless steel (UNS S31804). As a result of electrochemical experiments, electrochemical characteristics of various metals presented some differences with different composition ratios of acetic acid and acetonitrile. However, super austenitic stainless steel (UNS N08367) had the best corrosion resistance at a high pressure condition with a high concentration of acetic acid.

Evaluation of High Temperature Material Degradation for 12Cr Steel by Electrochemical Polarization Method (전기화학적 분극법을 이용한 12Cr강의 고온 재질열화도 평가)

  • Seo Hyon-Uk;Park Kee-Sung;Yoon Kee-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.965-975
    • /
    • 2006
  • High pressure turbine blades are one of the key components in fossil power plants operated at high temperature. The blade is usually made of 12Cr steel and its operating temperature is above $500^{\circ}C$. Long term service at this temperature causes material degradation accompanied by changes in microstructures and mechanical properties such as strength and toughness. Quantitative assessment of reduction of strength and toughness due to high temperature material degradation is required for residual life assessment of the blade components. Nondestructive technique is preferred. So far most of the research of this kind was conducted with low alloy steels such as carbon steel, 1.25Cr0.5Mo steel or 2.25Cr1Mo steel. High alloy steel was not investigated. In this study one of the high Cr steel, 12Cr steel, was selected for high temperature material degradation. Electrochemical polarization method was employed to measure degradation. Strength reduction of the 12Cr steel was represented by hardness and toughness reduction was represented by change of transition temperature, FATT. Empirical relationships between the electrochemical polarization parameter and significance of material degradation were established. These relationship can be used for assessing the strength and toughness on the aged high pressure blade components indirectly by using the electrochemical method.

The Pressure Drop and Heat Transfer Characteristics of a Direct Contact 4-Stage Fluidized Bed Heat Exchanger (직접 접촉식 4단 유동층 열교환기의 압력손실 및 열전달 특성)

  • 임동렬;박상일;전광민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.325-335
    • /
    • 1992
  • In this work, direct contact 4-stage fluidized bed heat exchanger is experimentally studied to develop a new type of heat exchanger which recovers the energy contained in the high temperature waste gas exhausted from the industrial furnaces. A sand is used as a heat transfer medium in this experiment. To determine the optimum operating condition, 11 different perforated plates which have a different free area ratio with different hole diameter are used in the experiment. From the room temperature experiment, the pressure drop which is caused by fluidized bed formation is observed. The high temperature experiment is carried out to seek the optimum operating condition of high heat efficiency at low heat exchanger operation cost. The results of experiment are as following. The pressure drop in the high temperature condition can be predicted from the results of the room temperature experiment. And Nusselt number becomes smaller due to the increased interference between sand particles as Reynolds number increases when the dilute phase fluidized beds are formed in nigh temperature condition. But heat transfer amount through the total sand surface area become larger due to the large resident amount of sand. Considering the heat transfer amount and the heat exchanger operation cost, perforated plates which have either a 30% or 35% of free area ratio with 15mm of hole diameter are best fitted for our goal of this work. The values of .phi. which is a dimensionless number representing the absorption heat amount per unit sand rate are in the range from 0.4 to 0.5, when Reynolds number of waste gas ranges from 25-30 with these perforated plates.

A Comparative Study on the Performance of High Pressure Fuel Pumps for Compression Ignition Engines Fueled by DME (DME를 연료로 하는 압축 착화 엔진용 고압연료 펌프의 성능 비교 연구)

  • JAEHEE JEONG;WONJUN CHO;OCKTAECK LIM
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.1
    • /
    • pp.59-68
    • /
    • 2023
  • In this study, the performance of high-pressure fuel pumps was compared to find a high-pressure pump suitable for dimethyl ether (DME) fuel, and to establish a database of basic data on flow rates. The use of DME in compression ignition engines can reduce pollutant emissions. The cetane value of DME is higher than that of diesel fuel. The physical properties of DME are similar to liquefied gasoline gas (LPG), and when pressurized at a pressure of 6 bar or more, it changes from gas to liquid. Two types of high pressure pumps used in this study were independent injection type pump and a wobble plate type pump. Two high-pressure pumps with different injection types were compared. By measuring and comparing the performance changes of the two high-pressure pumps, a pump suitable for DME was selected and performance improvement measures were proposed. The changed experimental conditions to measure the performance change of the high pressure pump were increased in the units of 100 to 1,000 rpm and 100 rpm, and the experiment was performed at common rail pressures 300 and 400 bar. it was confirmed that the DME inside the fuel supply system remained in a liquid state through temperature sensors, pressure sensors, and pressure gauges. As a result of the experiment, it was confirmed that the flow rate discharged from the high-pressure fuel pump increased as the motor rotational speed increased, and the flow rate of the high-pressure fuel pump

An Experimental Study on the Analyze the Pressure Difference in case of Fire in Vertical Space of High-Rise Buildings (고층건축물 수직공간의 화재 시 압력차 분석을 위한 실험적 연구)

  • Huh, Yerim;Kim, HyeWon;Jin, SeungHyeon;Kwon, YoungJin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.111-112
    • /
    • 2020
  • As buildings in South Korea become more skyscrapers, the risk of fire is also emerging. Thus, regulations, regulations, and guidelines are being improved to prevent the spread of smoke in the event of a fire in high-rise buildings, but research on smoke flow and pressure distribution in vertical spaces is insufficient. Therefore, in this study, the temperature of each floor in the vertical space according to the size of the fire is measured through the miniature model experiment, and the pressure difference is calculated to establish the basic data for the improvement of the performance of domestic air supply facilities in the future. Thus, a scale model of one-sixth the size of the actual building was produced to measure the temperature, and the pressure difference was derived by substituting the value for the expression. The pressure difference varies depending on the size of the cause of the fire, and it is believed that the differential pressure and conditions of the building should be taken into account before calculating the supply volume for the analysis of the pressure difference according to the size of the cause of the fire in the event of fire.

  • PDF

The Initial Film Flow Development of the High-Pressure Swirl Spray (고압스월분무 액막유동의 초기 발달과정에 대한 연구)

  • Moon, Seok-Su;Abo-Serie, Essam;Choi, Jae-Joon;Bae, Choong-Sik
    • Journal of ILASS-Korea
    • /
    • v.11 no.4
    • /
    • pp.212-219
    • /
    • 2006
  • The initial film flow development of the high-pressure swirl spray was investigated at different injector operating conditions to analyze film flow development and to provide the input data for the modeling works. This result can be also useful to verify the previously simulated results. The initial flow conditions such as liquid film thickness, flow angle and flow divergence are obtained by visualizing the inside and near the nozzle flow with a microscopic imaging system. The visualized images are quantified using an image processing tool. From the information of liquid film thickness and flow angle, the initial axial and tangential velocity and the swirl number of the swirl spray are successfully determined at various operating conditions. The experimental results showed that the initial liquid film thickness, flow angle and flow divergence are remained constant when the injection pressure is increased. However, initial film conditions are severely changed when the fuel temperature is increased. The swirl number remained constant when the injection pressure is increased while it showed increased value at high fuel temperature condition.

  • PDF

Continuous High Pressure Carbon Dioxide Processing of Mandarin Juice

  • Lim, Sang-Bin;Yagiz, Yavuz;Balaban, Murat O.
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.13-18
    • /
    • 2006
  • Mandarin juice was processed using a continuous high pressure $CO_2$ system. Response surface methodology was used to investigate the effects of the processing parameters such as temperature, pressure, residence time, and %(w/w) ratio of $CO_2$ to juice on total aerobic count (TAC), pectinesterase (PE) activity, cloud level, $^{\circ}Brix$, pH, and titratable acidity (TA) of the juices. Maximum log reduction (3.47) of TAC was observed at $35^{\circ}C$, 41.1 MPa, 9 min residence time, and 7% $CO_2$. PE was inactivated by 7-51%. The cloud was not only retained but was also enhanced by 38%. Lightness and yellowness increased, and redness decreased. The processing temperature and % $CO_2$/juice ratio significantly affected high pressure $CO_2$ processing of the juice in terms of pasteurization, PE inactivation, cloud increase, and color change. The $^{\circ}Brix$, pH, and TA before and after treatment remained unchanged.

A Study on Quenching Characteristics of a High Pressure Gas Quenching System (고압가스 냉각시스템의 특성 연구)

  • Kim, Han-Seok;An, Guk-Yeong;Lee, Sang-Min;Jang, Byeong-Rok
    • 연구논문집
    • /
    • s.34
    • /
    • pp.11-19
    • /
    • 2004
  • An Experimental study on the characteristics of high pressure gas quenching system was carried out in the present study. The characteristics of gas quenching system have been studied with high pressure gas chamber and specimen for various gas pressure and velocity which are the design parameter of quenching system. The quenching gas was used compressed air which properties are very similar with Nitrogen gas usually used in industrial gas quenching system. The result shows that the quenching rate of mid surface of specimen is lower than each ends of them which are close to low temperature quenching surface. And to increases the quenching intensity, the increment of quenching gas pressure is more efficient than the increment of quenching gas velocity at the point of reducing the circulation fan power.

  • PDF