• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.036 seconds

Finite Element Analysis of Hydrogen Concentration for Blister Growth Estimation of CANDU Pressure Tube (CANDU 압력관의 블리스터 성장 예측을 위한 유한요소 수소 확산 해석)

  • Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin;Kim, Young-Seok;Cheong, Yong-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.189-195
    • /
    • 2004
  • The pressure tubes, which contain high temperature heavy water and fuel, are within the core of a CANDU nuclear reactor, and are thus subjected to high stresses, temperature gradient, and neutron flux. Further, it is well known that pressure tubes of cold-worked Zr-2.5Nb materials result in hydrogen diffusion, which create fully-hydrided regions (frequently called Blister). Thus a proper investigation of hydrogen diffusion within zirconium-alloy nuclear components, such as CANDU pressure tube and fuel channels is essential to predict the structural integrity of these components. In this respect, this paper presents numerical investigation of hydrogen diffusion to quantify the hydrogen concentration fur blister growth of CANDU pressure tube. For this purpose, coupled temperature-hydrogen diffusion analyses are performed by means of two-dimensional finite element analysis. Comparison of predicted temperature field and blister with published test data shows good agreement.

Effect of the Neutral Beam Energy on Low Temperature Silicon Oxide Thin Film Grown by Neutral Beam Assisted Chemical Vapor Deposition

  • So, Hyun-Wook;Lee, Dong-Hyeok;Jang, Jin-Nyoung;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.253-253
    • /
    • 2012
  • Low temperature SiOx film process has being required for both silicon and oxide (IGZO) based low temperature thin film transistor (TFT) for application of flexible display. In recent decades, from low density and high pressure such as capacitively coupled plasma (CCP) type plasma enhanced chemical vapor deposition (PECVD) to the high density plasma and low pressure such as inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) have been used to researching to obtain high quality silicon oxide (SiOx) thin film at low temperature. However, these plasma deposition devices have limitation of controllability of process condition because process parameters of plasma deposition such as RF power, working pressure and gas ratio influence each other on plasma conditions which non-leanly influence depositing thin film. In compared to these plasma deposition devices, neutral beam assisted chemical vapor deposition (NBaCVD) has advantage of independence of control parameters. The energy of neutral beam (NB) can be controlled independently of other process conditions. In this manner, we obtained NB dependent high crystallized intrinsic and doped silicon thin film at low temperature in our another papers. We examine the properties of the low temperature processed silicon oxide thin films which are fabricated by the NBaCVD. NBaCVD deposition system consists of the internal inductively coupled plasma (ICP) antenna and the reflector. Internal ICP antenna generates high density plasma and reflector generates NB by auger recombination of ions at the surface of metal reflector. During deposition of silicon oxide thin film by using the NBaCVD process with a tungsten reflector, the energetic Neutral Beam (NB) that controlled by the reflector bias believed to help surface reaction. Electrical and structural properties of the silicon oxide are changed by the reflector bias, effectively. We measured the breakdown field and structure property of the Si oxide thin film by analysis of I-V, C-V and FTIR measurement.

  • PDF

Effect of Homogenization Pressure on Plasmin Activity and Mechanical Stress-Induced Fat Aggregation of Commercially Sterilized Ultra High Temperature Milk during Storage

  • Kim, Sun-Chul;Yun, So-Yul;Ahn, Na-Hyun;Kim, Seong-Min;Imm, Jee-Young
    • Food Science of Animal Resources
    • /
    • v.40 no.5
    • /
    • pp.734-745
    • /
    • 2020
  • Commercially sterilized ultra high temperature (UHT) milk was manufactured at different homogenization pressures (20, 25, and 30 MPa), and changes in fat particle size, mechanical stress-induced fat aggregation, plasmin activity, and lipid oxidation were monitored during ambient storage of the UHT milk for up to 16 wk. The particle sizes of milk fat globules were significantly decreased as homogenization pressure increased from 20 to 30 MPa (p<0.05). The presence of mechanical stress-induced fat aggregates in milk produced at 20 MPa was significantly higher than for UHT milk produced at either 25 or 30 MPa. This difference was maintained all throughout the storage. There were no significant differences in plasmin activity, trichloroacetic acid (12%, w/v) soluble peptides, and the extent of lipid oxidation. Based on these results, an increase of homogenization pressure from 20 (the typical homogenization pressure employed in the Korea dairy industry) to 25-30 MPa significantly decreased mechanical stress-induced fat aggregation without affecting susceptibility to lipid oxidation during storage.

Surface Graphite Formation of the Brown Colored Type I Diamonds During High Pressure Annealing (갈색 Type I 다이아몬드의 고압 열처리에 따른 표면 흑연화 생성 연구)

  • Song, Jeongho;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.614-619
    • /
    • 2012
  • We investigated color and graphite layer formation on the surface of Type I tinted brown diamonds exposed for 5 minutes under a high-pressure high-temperature (HPHT) condition in a stable graphite regime. We executed the HPHT processes of Process I, varying the temperature from $1600^{\circ}C$ to $2300^{\circ}C$ under 5.2 GPa pressure for 5 minutes, and Process II, varying the pressure from 4.2 to 5.7 GPa at $2150^{\circ}C$ for 5 minutes. Optical microscopy and micro-Raman spectroscopy were used to check the microstructure and surface layer phase evolution. For Process I, we observed a color change to vivid yellow and greenish yellow and the growth of a graphite layer as the temperature increased. For Process II, the graphite layer thickness increased as the pressure decreased. We also confirmed by 531 nm micro-Raman spectroscopy that all diamonds showed a $1440cm^{-1}$ characteristic peak, which remained even after HPHT annealing. The results implied that HPHT-treated colored diamonds can be distinguished from natural stones by checking for the existence of the $1440cm^{-1}$ peak with 531 nm micro-Raman spectroscopy.

The method for manufacturing a aluminum solid electrolytic capacitor using a conducting polymer (전도성 고분자를 이용한 알루미늄 고체 전해 커패시터의 제조방법)

  • Shin, Dal-Woo;Kim, Sung-Ho;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.61-64
    • /
    • 2001
  • This study relates to a method for manufacturing a solid electrolytic capacitor using a functional polymer composition. The method comprises immersing the rolled aluminum electrolytic capacitor device in polyaniline solution with high electric conductivity to impregnate the device with polyaniline, drying the impregnated device in a drying oven which is maintained at constant temperature to fully remove the solvent, inserting the dried device to a capacitor aluminum can and then sealing with epoxy resin, to manufacture a solid electrolytic capacitor using a conducting polymer. As such, the impregnation can be performed well at not only normal temperature and pressure, but also high temperature and reduced pressure. The solid electrolytic capacitor has the advantages of high capacity, low impedance and low ESR, and also, low manufacturing cost, simple processes and high reliability.

  • PDF

Material Properties Degradation of Composite Body Panel Exposed to High Temperature (복합재료 Body Panel의 고온열화 특성)

  • Pyun, Hyun-Joong;Nam, Hyun-Wook;Han, Kyung-Seop
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.219-224
    • /
    • 2000
  • A research for development of composite body panel is in progress for lightening tare. Low specific weight LPMC (Low pressure molding compound) has advantages such as lightweight and resistance to dent and corrosion. In this study, tensile, bending and impact tests for the LPMC and SPRC35 (High tension steel plate) were carried out and compared. Although mechanical properties of SPRC35 are better than the LPMC, the LPMC satisfies basic requirements for car body panel. The high temperature exposed LPMC were degraded due to fiber-matrix debonding and deterioration of resin.

  • PDF

The method for manufacturing a aluminum solid electrolytic capacitor using a conducting polymer (전도성 고분자를 이용한 알루미늄 고체 전해 커패시터의 제조방법)

  • 신달우;김성호;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.61-64
    • /
    • 2001
  • This study relates to a method for manufacturing a solid electrolytic capacitor using a functional polymer composition. The method comprises immersing the rolled aluminum electrolytic capacitor device in polyaniline solution with high electric conductivity to impregnate the device with polyaniline, drying the impregnated device in a drying oven which is maintained at constant temperature to fully remove the solvent, inserting the dried device to a capacitor aluminum can and then sealing with epoxy resin, to manufacture a solid electrolytic capacitor using a conducting polymer. As such, the impregnation can be performed well at not only normal temperature and pressure, but also high temperature and reduced pressure. The solid electrolytic capacitor has the advantages of high capacity, low impedance and low ESR, and also, low manufacturing cost, simple processes and high reliability.

  • PDF

Solubility Study of Nickel Ferrite in Boric Acid Using a Flow-Through Autoclave System under High Temperature and High Pressure

  • Park, Yong Joon;Choi, Ke-Chon;Ha, Yeong-Keong
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.554-558
    • /
    • 2016
  • The solubility of nickel ferrite in an aqueous solution of boric acid was studied by varying the pH at the temperatures ranging from $25^{\circ}C$ to $320^{\circ}C$. A flow-through autoclave system was specially designed and fabricated to measure the solubility of Fe in hydrothermal solutions under high temperature and pressure. The performance of this flow-through system was directly compared with the conventional static state technique using a batch-type autoclave system. The stability of fluid velocity for the flow-through autoclave system was verified prior to the solubility measurement. The influence of chemical additives, such as boric acid and $H_2$, on the solubility of nickel ferrite was also evaluated.

Pressure-load Calibration of Multi-anvil Press at Ambient Temperature through Structural Change in Cold Compressed Amorphous Pyrope (비정질 파이로프의 저온 압축에 따른 구조 변화를 이용한 멀티 앤빌 프레스의 상온 압력-부하 보정)

  • Lhee, Juho;Kim, Yong-Hyun;Lee, A Chim;Kim, Eun Jeong;Lee, Seoyoung;Lee, Sung Keun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.65-73
    • /
    • 2022
  • The proper estimation of physical and chemical properties of Earth materials and their structures at high pressure and high temperature conditions is key to the full understanding of diverse geological processes in Earth and planetary interiors. Multi-anvil press - high-pressure generating device - provides unique information of Earth materials under compression, mainly relevant to Earth's upper mantle. The quantitative estimation of the relationship between the oil load within press and the actual pressure conditions within the sample needs to be established to infer the planetary processes. Such pressure-load calibration has often been based on the phase transitions of crystalline earth materials with known pressure conditions; however, unlike at high temperature conditions, phase transitions at low (or room) temperatures can be sluggish, making the calibration at such conditions challenging. In this study, we explored the changes in Al coordination environments of permanently densified pyrope glasses upon the cold compression using the high-resolution 27Al MAS and 3QMAS NMR. The fractions of highly coordinated Al in the cold compressed pyrope glasses increase with increasing oil load and thus, the peak pressure condition. Based on known relationship between the peak pressure and the Al coordination environment in the compressed pyrope glasses at room temperature, we established a room temperature pressure-load calibration of the 14/8 HT assembly in 1,100-ton multi-anvil press. The current results highlight the first pressure-load calibration of any high pressure device using high-resolution NMR. Irreversible structural densification upon cold compression observed for the pyrope glasses provides insights into the deformation and densification mechanisms of amorphous earth materials at low temperature and high pressure conditions within the subducting slabs.

Experimental Study on Microexplosive Burning of Binary Fuel Droplets (이성분 연료 액적 연소에 관한 실험적 연구)

  • Ghassemi, Hojat;Baek, Seung-Wook;Khan, Qasim Sarwar
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.110-119
    • /
    • 2005
  • The combustion characteristics of binary component single droplets hanging at the tip of a quartz fiber are studied experimentally at different environmental pressures and temperatures under normal gravity. Normal Heptane and Normal Hexadecane are selected as two fuels with high difference in boiling temperatures. A falling electrical furnace in a high pressure vessel has provided high temperature environment. Nitrogen and air have formed the environment to study evaporation and combustion, respectively. The initial diameter of droplet was ranging from 1.1 to 1.3 mm. The evaporation and combustion processes were recorded by a high speed digital camera. Some characteristics of droplet burning under different environment conditions and different droplet composition have been investigated. Microexplosion of droplet take places under atmospheric pressure. Bubble formation and its consequent result, incomplete droplet disintegration which presents in all binary compositions, do not appear at high pressure. The initiation of combustion, always takes place in the bottom of droplet due to buoyancy effect of relatively cold fuel vapor. Also, the burning of binary droplet produces soot when the pressure is high.

  • PDF