• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.032 seconds

High Pressure X-ray Diffraction Studies on a Natural Talc (천연산 활석에 대한 고압 X-선 회절연구)

  • 김영호;이지은
    • Journal of the Mineralogical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 1999
  • Talc (Mg3Si4O10(OH)2), one of the sheet silicate minerals, which is the hydrothermal alteration product of serpentinite at Cheongarm mine was prepared for the high pressure compressibility studies. Energy dispersive X-ray diffraction experiment was carried out using the Synchrotron Radiation with the Mao-Bell type diamond anvil cell at room temperature. Polycrystalline talc was mixed with MgO powder for pressure sensor as well as pressure medium in the sample chamber. High pressure runs were performed at pressures up to 35.2 GPa. Talc shows no phase transition within the present high pressure region. Bulk modulus of this talc was determined by the Birch-Murnaghan equation of state to be 78 GPa assuming its first pressure derivative Ko' of 4.

  • PDF

A Study on the Behavior Characteristics of Diesel Spray by Using a High Pressure Injection System with Common Rail Apparatus

  • Yeom, Jeong-Kuk;Hajime Fujimoto
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1371-1379
    • /
    • 2003
  • The effects of change in injection pressure on spray structure in high temperature and pressure field have been investigated. The analysis of liquid and vapor phases of injected fuel is important for emissions control of diesel engines. Therefore, this work examines the evaporating spray structure using a constant volume vessel. The injection pressure is selected as the experimental parameter, is changed from 22 MPa to 112 MPa using a high pressure injection system (ECD-U2). Also, we conducted simulation study by modified KIVA-II code. The results of simulation study are compared with experimental results. The images of liquid and vapor phase for free spray were simultaneously taken by exciplex fluorescence method. As experimental results, the vapor concentration of injected fuel is leaner due to the increase of atomization in the case of the high injection pressure than in that of the low injection pressure. The calculated results obtained by modified KIVA-II code show good agreements with experimental results.

Study on Self-Propagating High-Temperature Synthesis of TiN Powder (SHS 공정에 의한 TiN 분말합성에 관한 연구)

  • ;S.G. Vadchenco
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.1
    • /
    • pp.41-48
    • /
    • 1996
  • Self-propagating High-temperature Synthesis of Ti+N system has been investigated using the cylindrical high pressure reactor. The nitrogen pressure was varied from 40 to 80 atmosphere and TiNx(x=0.55) powder produced by SHS process was used as a diluent in order to control the reaction. Both the velocity of surface reaction and the ratio of TiN synthesis increased with increasing the nitrogen pressure. As the amount of diluent increases the degree of conversion to titanium nitride increases. Homogenious TiN powder was obtained in the composition 50Ti+50TiN0.94(diluent)

  • PDF

Evaluation on Vapor Pressure of Ultra-high-strength Concrete by Heating Condition (가열조건에 따른 초고강도 콘크리트의 내부수증기압력 평가)

  • Hwang, Eui-Chul;Kim, Gyu-Yong;Yoon, Min-Ho;Lee, Bo-Kyeong;Seo, Won-woo;Baek, Jae-Uk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.224-225
    • /
    • 2017
  • Ultra-high-strength concrete exposed to high temperature is likely to cause spalling. Spalling is caused by the vapor pressure of the concrete, and the vapor pressure may be different depending on the heating conditions of the concrete. Therefore, in this study, a ring-type restrained specimen was fabricated using ultra-high-strength concrete and the vapor pressure generated in the concrete by heating condition(rapid and slow heating) was evaluated.

  • PDF

Development of Optimum High Pressure Algorithm for a Transcritical $CO_2$ Mobile Air-Conditioning System ($CO_2$ 자동차 에어컨 시스템의 최적 고압 설정 알고리즘 개발에 관한 연구)

  • Lee, Jong-Bong;Lee, Jun-Kyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.159-165
    • /
    • 2008
  • This paper deals with the optimum high pressure control algorithm for a transcritical $CO_2$ mobile air-conditioning system with belt-driven compressor to achieve the maximum COP. The experiments were performed to find out the maximum COP conditions with various operating conditions. The experimental results showed that the COP was increased and then decreased with increase of the refrigerant high pressure for the system. Therefore the value of high pressure which has maximum COP could be selected. Furthermore, the strong (linear) relation between the optimum high pressure and the gas cooler outlet temperature was revealed, which suggests the use of a simple controller with only one parameter for the transcritical $CO_2$ cycle.

Elastic/Plastic High-temperature Structural Analysis on the Small Scale PHE Prototype (소형 공정열교환기 시제품에 대한 탄소성 고온구조해석)

  • Song, Kee-nam;Lee, H-Y;Hong, S-D;Park, H-Y
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.2
    • /
    • pp.1-6
    • /
    • 2011
  • PHE(Process Heat Exchanger) is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR(Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. Korea Atomic Energy Research Institute established a small-scale gas loop for the performance test of components, which are used in the VHTR, and they manufactured a PHE prototype made of Hastelloy-X to be tested in the small-scale gas loop. Results from the elastic structural analysis on the PHE prototype were reported in the previous article. In order to investigate the macroscopic structural characteristics and behavior of the PHE prototype under the test condition of the small-scale gas loop far more in detail, elastic-plastic high-temperature structural-analysis of the PHE prototype was carried out in this study.

High-Temperature Tensile Strengths of Alloy 617 Diffusion Weldment (Alloy 617 확산용접재의 고온 인장강도)

  • Sah, Injin;Hwang, Jong-Bae;Kim, Eung-Seon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.1
    • /
    • pp.15-23
    • /
    • 2018
  • A compact heat exchanger is one of critical components in a very high temperature gas-cooled reactor (VHTR). Alloy 617 (Ni-Cr-Co-Mo) is considered as one of leading candidates for this application due to its excellent thermal stability and strengths in anticipated operating conditions. On the basis of current ASME code requirements, sixty sheets of this alloy are prepared for diffusion welding, which is the key technology to have a reliable compact heat exchanger. Optical microscopic analysis show that there are no cracks, incomplete bond, and porosity at/near the interface of diffusion weldment, but Cr-rich carbides and Al-rich oxides are identified through high resolution electron microscopic analysis. In high-temperature tensile testing, superior yield strengths of the diffusion weldment compared to the code requirement are obtained up to 1223 K ($950^{\circ}C$). However, both tensile strength and ductility drop rapidly at higher temperature due to the insufficient grain boundary migration across the interface of diffusion weldment. Best fit curves for minimum yield strength and average tensile strength are drawn from the experimental tensile results of this study.

High-Temperature Structural Analysis on the Medium-Scale PHE Prototype under the Test Condition of Small-Scale Gas Loop (소형가스루프 시험조건에서 중형 공정열교환기 시제품의 고온구조해석)

  • Song, Kee-nam;Hong, S-D;Park, H-Y
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.1
    • /
    • pp.33-38
    • /
    • 2012
  • A PHE (Process Heat Exchanger) in a nuclear hydrogen system is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature Reactor) to a chemical reaction that yields a large quantity of hydrogen. Korea Atomic Energy Research Institute has established a small-scale gas loop for the performance test on VHTR components and recently has manufactured a medium-scale PHE prototype made of Hastelloy-X. A performance test on the PHE prototype is scheduled in the gas loop. In this study, high-temperature structural analysis modeling, and macroscopic thermal and structural analysis of the medium-scale PHE prototype by imposing the established displacement boundary constraints in the previous research were carried out under the gas loop test condition. The results obtained in this study will be compared with performance test results.

A Study on the Fluid Mixing Analysis for Proving Shell Wall Thinning of a Feedwater Heater (급수가열기 동체 감육 현상 규명을 위한 유동해석 연구)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Kim, Sang-Nyung
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.24-30
    • /
    • 2004
  • Feedwater flowing tube side of number 5 high pressure feedwatrr heaters was heated by extracting steam from high pressure turbine and draining water from moisture separators and number 6 high pressure feedwater heaters and supplied into steam generators. Because the extracting steam from the high pressure turbine is two phase fluid of high temperature, high pressure, and high speed and flows to inverse direction after impinging to impingement baffle. the shell wall of the number 5 high pressure feedwater heater may be affected by flow accelerated corrosion. On May 14, 1999, Point Beach Nuclear Plant (PBNP) with operating at full power experienced a steam leak from rupture of shell side of number 4B feedwater heater. Also, d domestic nuclear power plant experienced a severe wall thinning of shell side of number 5A and 5B feedwater heaters. This paper describes the fluid mixing analysis study using PHOENICS code in order to get at the root of the shell wall thinning of the feedwater heaters. The sections included in the fluid mixing analysis model are around the number 5h feedwater heater shell including the extracting pipeline. To identify the relation between the local velocities and wall thinning. the local velocities according to the analysis results were compared with the distribution of the shell wall thickness by ultrasonic test.

  • PDF

Formation and Growth Estimation of Blister in Zr-2.5Nb Pressure Tubes based on Finite Element Analysis (유한요소해석을 이용한 지르코늄 압력관의 블리스터 생성 및 성장 해석)

  • Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin;Kim, Young-Seok;Cheong, Yong-Moo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1133-1138
    • /
    • 2003
  • The pressure tubes, which contain high temperature heavy water and fuel, are within the core of a CANDU nuclear reactor, and are thus subjected to high stresses, temperature gradient, and neutron flux. Further, it is well known that pressure tubes of cold-worked Zr-2.5Nb materials result in hydrogen diffusion, which create fully-hydrided regions (frequently called Blister). Thus a proper investigation of hydrogen diffusion within zirconium-alloy nuclear components, such as CANDU pressure tube and fuel channels is essential to predict the structural integrity of these components. In this respect, this paper presents numerical investigation of hydrogen diffusion to quantify the hydrogen concentration for blister growth of CANDU pressure tube. For this purpose, coupled temperature-hydrogen diffusion analyses are performed by means of two-dimensional finite element analysis. Comparison of predicted temperature field and blister with published test data shows good agreement.

  • PDF