• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.032 seconds

Experimental Study on PSA Process for High Purity CH4 Recovery from Biogas (바이오가스로부터 고순도 CH4 회수를 위한 PSA 공정의 실험적 연구)

  • Kim, Young-Jun;Lee, Jong-Gyu;Lee, Jong-Yeon;Kang, Yong-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.4
    • /
    • pp.281-286
    • /
    • 2011
  • The objective of this study is to optimize the four-bed six-step pressure swing adsorption(PSA) process for high purity $CH_4$ recovery from the biogas. The effects of P/F(purge to feed) ratio and cycle time on the process performance were evaluated. The cyclic steady-states of PSA process were reached after 12 cycles. The purity and recovery rate of product gas, pressure and temperature changes were constant as the cycle repeated. It was shown that the P/F ratio gave significant effect on the product recovery rate by increasing the amount of purge gas in purge and regeneration step. The optimal P/F ratio was found to be 0.08. As the cycle time increased, the product purity decreased by increasing the feed gas flow rate. It was found that the optimal operating conditions were P/F ratio of 0.08 and total cycle time of 1,440 seconds with the purity of 97%.

Mass Transfer and Hydraulic Kinematic Character Using Lattices Packings by Countercurrent Flow of Gas-Liquid Phase in Packing Column (격자형 충진물을 이용한 충진탑내 기액상의 역류에 의한 물질전달과 수력학적 동특성)

  • Kim, Jang-Ho;Ha, Sang-An
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.130-137
    • /
    • 1988
  • This thesis introduced that character of a treatment technique for a mading synthetic resin Hifiow-Ring. The material system of packings make an experiment air$NH_{3}$/air$H_{2}SO_{4}$, $SO_{2}$-air/NaOH, $NH_{3}$-air/$/H_{2}SO_{4}$ under general conditions. Lattices packing compared with conventional packings was proved low pressure loss and high separation efficiency for high loading per trans unit. And an inflow materal tested for absorption and rectification, it made an experiment under a range regular temperature, low energy and small amount of money. That made possible in simple equation, volume material tranfer coefficient$\beta_{L}$ . a by absorption or $\beta_{V}$ .a calculated in all range loading. The peculiarity pressure loss $\Delta\;P/NUT_{ov}$ for Hiflow-ring contributed to a fall cost of energy, a grade number of a vacuum rectification and absorption calculation.

  • PDF

Solid Propellants for Propulsion System Including A Yellow Iron Oxide (황색산화철을 포함하는 혼합형 추진제의 특성에 관한 연구)

  • Park, Sungjun;Choi, Sunghan;Won, Jongung;Park, Jungho;Park, Euiyong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.498-503
    • /
    • 2017
  • There is no unusual difference in the initial viscosity of the propellant applied with yellow iron oxide and red iron oxide. In addition, the thermal decomposition rate of the material added with yellow iron oxide is faster than that of the addition of red iron oxide. Especially, it was confirmed that the pressure exponent was 18% lower at high temperature and high pressure. The initial viscosity was lowest at 71% of large particle/small particle ratio

  • PDF

Unsteady Wet Steam Flow Measurements in a Low-Pressure Test Steam Turbine

  • Duan, Chongfei;Ishibashi, Koji;Senoo, Shigeki;Bosdas, Ilias;Mansour, Michel;Kalfas, Anestis I.;Abhari, Reza S.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.85-94
    • /
    • 2016
  • An experimental study is conducted for unsteady wet steam flow in a four-stage low-pressure test steam turbine. The measurements are carried out at outlets of the last two stages by using a newly developed fast response aerodynamic probe. This FRAP-HTH probe (Fast Response Aerodynamic Probe - High Temperature Heated) has a miniature high-power cartridge heater with an active control system to heat the probe tip, allowing it to be applied to wet steam measurements. The phase-locked average results obtained with a sampling frequency of 200 kHz clarify the flow characteristics, such as the blade wakes and secondary vortexes, downstream from the individual rotational blades in the wet steam environment.

Corrosion Behaviors of Neutron-Irradiated Reactor Pressure Vessel Steels with Various Nickel and Chromium Contents (Ni과 Cr 함량이 다른 원자로 압력용기용 강의 중성자 조사 후 내식성 평가)

  • Choi, Yong
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.6
    • /
    • pp.293-297
    • /
    • 2019
  • Quasi-nano-hardness and corrosion behaviors of neutron-irradiated reactor pressure vessel (RPV) steels such as 15Ch2MFA (Ni<0.4, 2.520 n/㎠ (En>1.0 MeV) for 32 days. Quasi-nano-hardnesses of the 15Ch2MFA and 15Cr2NHFA steels were 183.8 and 179.8 Hv, respectively. Their corrosion rates and corrosion potentials were 2.4×10-4Acm-2, -515.9 mVSHE and 6.8×10-4 Acm-2, -523.6 mVSHE in NACE standard TM0284-96 solution at room temperature, respectively. 15Ch2MFA steel showed better quasi-nano-hardness and corrosion resistance than 15Cr2NHFA steel in this test condition.

Effect of low H2 content in natural gas on the Combustion Characteristics of Gas Turbine (천연가스 내 미량의 수소함량이 가스터빈의 연소특성에 미치는 영향)

  • Lee, Min Chul;Park, Seik;Kim, Sungchul;Yoon, Jisoo;Joo, Sungpeel;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.109-110
    • /
    • 2013
  • This paper describes gas turbine combustion characteristics of synthetic natural gas which contains a small amount hydrogen content. By conducting ambient pressure high temperature combustion test at gas turbine relevant combustor geometry, the combustion characteristics such as combustion instability, NOx and CO emission, temperatures at turbine inlet, nozzle and dump plane, and flame structure from high speed OH chemiluminescence images were investigated when changing hydrogen content from zero to 5%. From the results, qualitative and quantitative relationships are derived between key aspects of combustion performance, notably NOx/CO emission and combustion instability. Natural gas containing hydrogen up to 5% does not show significant difference in view of all combustion characteristics except combustion instability. Only up to 1% hydrogen addition could not change the pressure fluctuation and phase gas between fluctuations of pressure and heat release. From the results, it can be concluded that synthetic national gas which contains 1% of hydrogen can be guaranteed for the stable and reliable operation of natural gas firing gas turbine.

  • PDF

High Performance InGaZnO Thin Film Transistor by Atmospheric Pressure Ar Plasma Treatment (대기압 아르곤 플라즈마 처리를 통한 IGZO TFT의 전기적 특성 향상 연구)

  • Jeong, Byung-Jun;Jeong, Jun-Kyo;Park, Jung-Hyun;Kim, Yu-Jung;Lee, Hi-Deok;Choi, Ho-Suk;Lee, Ga-Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.59-62
    • /
    • 2017
  • In this paper, atmospheric pressure plasma treatment was proposed for high performance indium gallium zinc oxide thin film transistor (IGZO TFT). RF Ar plasma treatment is performed at room temperature under atmospheric pressure as a simple and cost effective channel surface treatment method. The experimental results show that field effect mobility can be enhanced by $2.51cm^2/V{\cdot}s$ from $1.69cm^2/V{\cdot}s$ to $4.20cm^2/V{\cdot}s$ compared with a conventional device without plasma treatment. From X-ray photoelectron spectroscopy (XPS) analysis, the increase of oxygen vacancies and decrease of metal-oxide bonding are observed, which suggests that the suggested atmospheric Ar plasma treatment is a cost-effective useful process method to control the IGZO TFT performance.

  • PDF

Computational analysis of compressibility effects on cavity dynamics in high-speed water-entry

  • Chen, Chen;Sun, Tiezhi;Wei, Yingjie;Wang, Cong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.495-509
    • /
    • 2019
  • The objective of this study is to analyze the compressibility effects of multiphase cavitating flow during the water-entry process. For this purpose, the water-entry of a projectile at transonic speed is investigated computationally. A temperature-adjusted Tait equation is used to describe the compressibility effects in water, and air and vapor are treated as ideal gases. First, the computational methodology is validated by comparing the simulation results with the experimental measurements of drag coefficient and the theoretical results of cavity shape. Second, based on the computational methodology, the hydrodynamic characteristics of flow are investigated. After analyzing the cavitating flow in compressible and incompressible fluids, the characteristics under compressible conditions are focused upon. The results show that the compressibility effects play a significant role in the development of cavitation and the pressure inside the cavity. More specifically, the drag coefficient and cavity size tend to be larger in the compressible case than those in the incompressible case. Furthermore, the influence of entry velocities on the hydrodynamic characteristics is investigated to provide an insight into the compressibility effects on cavitating flow. The results show that the drag coefficient and the impact pressure vary with the entry velocity, and the prediction formulas for drag coefficient and impact pressure are established respectively in the present study.

Phase Behavior of Simvastatin Drug in Mixtures of Dichloromethane and Supercritical Carbon Dioxide and Microparticle Formation of Simvastatin Drug Usins Supercritical Anti-Solvent Process (디클로로메탄과 초임계 이산화탄소의 혼합용매에서 Simvastatin 약물의 상거동과 초임계 역용매 공정을 이용한 Simvastatin 약물 미세입자의 제조)

  • Oh, Dong-Joon;Lee, Byung-Chul
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.34-45
    • /
    • 2007
  • Phase behavior of the ternary systems of water-insoluble simvastatin drug, which is well known to be effective drugs for hypercholesterolemia therapy, in solvent mixtures of dichloromethane and supercritical carbon dioxide was investigated to present a guideline of establishing operating conditions in the particle formation of the drugs by a supercritical anti-solvent recrystallization process utilizing dichloromethane as a solvent and carbon dioxide as an anti-solvent. The solubilities of simvastatin in the mixtures of dichloromethane and carbon dioxide were determined as functions of temperature, pressure and solvent composition by measuring the cloud points of the ternary mixtures at various conditions using a high-pressure phase equilibrium apparatus equipped with a variable-volume view cell. The solubility of the drug increased as the dichloromethane composition in solution and the system pressure increases at a fixed temperature. A lower solubility of the drug was obtained at a higher temperature. The second half of this work is focused on the particle formation of the simvastatin drug by a supercritical anti-solvent recrystallization process in a cylindrical high-pressure vessel equipped with an impeller. Microparticles of the simvastatin drug were prepared as functions of pressure (8 MPa to 12 MPa), temperature (303.15 K, 313,15 K), feed flow rate of carbon dioxide, and stirring speed (up to 3000 rpm), in order to observe the effect of those process parameters on the size and shape of the drug microparticles recrystallized.

  • PDF

Evaluation on Spalling Properties of Ultra High Strength Concrete with Melting and Vaporization of Fiber (유기섬유의 용융 및 기화에 따른 초고강도 콘크리트의 폭렬 특성 평가)

  • Kim, Gyu-Yong;Choe, Gyeong-Cheol;Lee, Joo-Ha;Lee, Seung-Hoon;Lee, Tae-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.173-183
    • /
    • 2012
  • Recently, experimental studies to prevent explosive spalling based on spalling mechanism and addition of Polypropylene fiber in high strength concrete (HSC) are performed actively. However, with respect to ultra high strength concrete (UHSC), its compact internal structure is more difficult release vapor pressure at rapid rising temperature compared to HSC. Therefore, in this study, an experiment was conducted to evaluate spalling properties of UHSC using ${\Box}$ $100mm{\times}100{\times}H200mm$ rectangular specimen according to ISO-834 standard fire curve. With respect melting point of fiber, three fiber types of Polyethylene, Polypropylene, and Nylon fibers with melting temperature of $110^{\circ}C$, $165^{\circ}C$, and $225^{\circ}C$, respectively, were considered. Mixed fiber of 0.15% and 0.25% of concrete volume was used to consider spalling properties based on water vapor pressure release. Then, TGDTA test on fiber and FEM analysis were performed. The results showed that it is difficult to prevent initial spalling without loss of fiber mass even if fiber melting temperature is low. Also, in preventing thermal spalling, fiber that melts to rapidly create porosity within 10 minutes of fire is more effective than that of low melting temperature property of fiber.