• Title/Summary/Keyword: high temperature coating

Search Result 826, Processing Time 0.03 seconds

A Study on Heat Resistance of High Temperature Resistant Coating

  • Zhang, Liping;Wang, Xueying;Zhang, Qibin;Qin, Yanlong;Lin, Zhu
    • Corrosion Science and Technology
    • /
    • 제4권2호
    • /
    • pp.60-63
    • /
    • 2005
  • A high temperature resistant coating has been developed, which is mainly for heavy oil production pipes deserved the serious corrosion. The coating has excellent physical and mechanical performance and corrosion resistance at room and high temperature. In order to simulate the underground working condition of heavy oil pipes, the heat resistance of the high temperature resistant coating has been studied. The development and a study on the heat resistance of the DHT high temperature resistance coating have been introduced in this paper.

고온 액상 성형용 금형 수명 향상을 위한 TiAlCrSiN 코팅의 특성 (Characteristics of TiAlCrSiN coating to improve mold life for high temperature liquid molding)

  • 여기호;박은수;이한찬
    • 한국표면공학회지
    • /
    • 제54권5호
    • /
    • pp.285-293
    • /
    • 2021
  • High-entropy TiAlCrSiN nano-composite coating was designed to improve mold life for high temperature liquid molding. Alloy design, powder fabrication and single alloying target fabrication for the high-entropy nano-composite coating were carried out. Using the single alloying target, an arc ion plating method was applied to prepare a TiAlCrSiN nano-composite coating had a 30 nm TiAlCrSiN layers are deposited layer by layer, and form about 4 ㎛-thickness of multi-layered coating. TiAlCrSiN nano-composite coating had a high hardness of about 39.9 GPa and a low coefficient of friction of less than about 0.47 in a dry environment. In addition, there was no change in the structure of the coating after the dissolution loss test in the molten metal at a temperature of about 1100 degrees.

조종실 온도 영향성 검증을 위한 캐노피 투명체 코팅 연구 (The Canopy Transparency Coating Study of Cockpit Temperature Effect Verification)

  • 남용석;김태환;김윤희;우성조;김명호
    • 항공우주시스템공학회지
    • /
    • 제2권2호
    • /
    • pp.42-45
    • /
    • 2008
  • Under the non-operating exposure condition in the hot area, the T-50 cockpit temperature is expected over the requirement according to T-50 environmental criteria. So it is necessary to protect the cockpit from the high temperature condition during the non-operating exposure because the high temperature of the cockpit may result in the cockpit equipment malfunction. In this study, the transparency coating is selected as the method for protecting the cockpit from the high temperature exposure and analyzed the effect on the cockpit heat load attenuation. Some kinds of cockpit coating were reviewed and selected and the analysis was performed about the effect before and after coating application under 1% hot day condition based on the T-50 FSD hot soaking test data. The result of analysis show transparency coating is so effective to attenuate the heat load of T-50 cockpit.

  • PDF

광섬유 WOW 액상코팅 공정의 코팅액 유동특성 해석연구 (Analysis of Coating Flow Characteristics in Wet-on-Wet Optical Fiber Liquid Coating Process)

  • 김경진;박중윤
    • 반도체디스플레이기술학회지
    • /
    • 제16권4호
    • /
    • pp.91-96
    • /
    • 2017
  • In this computational study of optical fiber manufacturing, WOW (wet-on-wet) double coating process on freshly drawn glass fiber has been numerical modelled and simulated using a simplified geometry of typical optical fiber coating apparatus. The numerical domain includes primary and secondary coating dies along with secondary coating cup and the interface between primary and secondary coating liquids are investigated using level set method. Coating liquid viscosity is an important parameter and its dependence on temperature is also considered. Since there would be possibility for pressure and temperature of primary coating liquid to be increased substantially at high fiber drawing speed, the effects of increased pressure and temperature of primary coating liquid are examined on flow patterns of coating liquids in secondary coating cup. In case that both pressure and temperature of primary coating liquid are high enough, liquid interface becomes noticeably unstable and this flow instability could adversely affect the uniform coatings and final quality of produced optical fiber.

  • PDF

High Temperature Oxidation Behavior of Plasma Sprayed $ZrO_2$ Having Functionally Gradient Thermal Barrier Coating

  • Park, Cha-Hwan;Lee, Won-Jae;Cho, Kyung-Mox;Park, Ik-Min
    • Corrosion Science and Technology
    • /
    • 제2권3호
    • /
    • pp.155-160
    • /
    • 2003
  • Plasma spraying technique was used to fabricate functionally graded coating (FGC) of NiCrAIY/YSZ 8wt%$Y_2O_3-ZrO_2$ on a Co-base superalloy (HAYNES 188) substrate. Six layers were coated on the substrate for building up compositionally graded architecture. Conventional thermal barrier coating (TBC) of NiCrAIY/SZ with sharp interface was also fabricated. As-coated FGC and TBC samples were exposed at the temperature of $1100^{\circ}C$ for 10, 50, 100 hours in air. Microstructural change of thermally exposed samples was examined. Pores and microcracks were formed in YSZ layer due to evolution of thermal internal stress at high temperature. The amount of pores and microcracks in YSZ layer were increased with increasing exposure time at high temperature. High temperature oxidation of coatings occurred mainly at the NiCrAIY/YSZ interface. In comparison with the case of TBC. the increased area of the NiCrAIY/YSZ interface in FGC is likely to attribute to forming the higher amount of oxides.

LPPS용사법과 HVOF 용사법으로 제조된 CoNiCrAlY 코팅의 고온물성에 관한 연구 (A study on the high temperature properties of CoNiCrAlY coating fabricated by HVOF and LPPS process)

  • 강현욱;권현옥;송요승
    • 한국표면공학회지
    • /
    • 제34권2호
    • /
    • pp.161-168
    • /
    • 2001
  • A Thermal Barrier Coating (TBC) can play an important role in protecting parts from harmful environments at high temperatures such as oxidation, corrosion, and wear in order to improve the efficiency of aircraft engines by lowering the surface temperature of the turbine blade. The TBC can increase the life span of the product and improve the operating properties. Therefore, in this study the mechanical and thermal properties of the TBC such as oxidation, fatigue and shock at high temperatures were evaluated. A samples of a bond coat (CoNiCrAlY) produced by the High Velocity Oxygen Fuel (HVOF) and Low Pressure Plasma Spray (LPPS) method were used. The thickness of the HVOF coating layer was approximately $450\mu\textrm{m}$ to 500$\mu\textrm{m}$ and the hardness number of the coating layer was between 350Hv and 400Hv. The thickness of the LPPS coating was about 350$\mu\textrm{m}$ to 400$\mu\textrm{m}$ and the hardness number of the coating was about 370Hv to 420Hv. The X-ray diffraction analysis showed that CoNiCrAlY coating layer of the HVOF and LPPS was composed of the $\beta$and ${\gamma}$phase. After the high temperature oxidation test, the oxide scale with about l0$\mu\textrm{m}$ to 20$\mu\textrm{m}$ thickness appeared at the coating surface on the Al-depleted zone was observed under the oxide scale layer.

  • PDF

초고속 회전체의 내구성향상을 위한 Co-alloy(T800)의 초고속 용사코팅 (HVOF Spray Coating of Co-alloy(T800) for the Improvement of durability of High Speed Spindle)

  • 조동율;윤재홍;김길수;윤석조;백남기;박병철;천희곤
    • 한국공작기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.32-37
    • /
    • 2006
  • Micron size Co-alloy(T800) powder was coated on Inconel 718 by HVOF thermal spraying for the studies of the improvement of durability of high speed spindle by using Taguchi program for the parameters of spray distance, flow rates of hydrogen and oxygen and powder feed rate. The optimal coating process was determined by the studies of coating properties such as micro-structure, porosity, surface roughness and micro hardness. Friction and wear behaviors of coatings were investigated by sliding wear test at room temperature and $1000^{\circ}F(538^{\circ}C)$. At both room temperature and $538^{\circ}C$ the sliding wear debris and friction coefficients of the coating were drastically reduced compared with the surface of non-coated parent material. This shows that Co-alloy powder coating is highly recommendable for the durability improvement surface coating of high speed air-bearing spindle. At high temperature wear traces and friction coefficients of both coating and non-coating were drastically reduced compared with those of room temperature since the brittle oxides were formed easily on the surface, and the brittle oxide phases were attrited by the reciprocating sliding wear according to the complicated mixed wear mechanisms These oxide particles, partially melts and the melts play role as lubricant and reduce the wear and friction coefficient. This also shows that Co-alloy powder coating is highly recommendable far the durability improvement surface coating on the surface vulnerable to frictional heat such as high speed spindles.

AIP 코팅법에서 로의 온도가 고속도강의 TiN 코팅에 미치는 영향에 관한 실험적 연구 (Experimental Study on Effect of Furnace Temperature on TiN-Coating of High Speed Steel by Arc Ion Plating)

  • 김해지;이상욱;전만수
    • 한국정밀공학회지
    • /
    • 제23권2호
    • /
    • pp.97-103
    • /
    • 2006
  • In this paper, effect of temperature in TiN-coating by arc ion plating on surface characteristics of a TiN coated high speed steel is investigated by experiments. Hardness, surface roughness, TiN-coating thickness and adsorption force are measured in order to evaluate the effects. For evaluation of the experimental data, one-way ANOVA method is used. It is concluded that the furnace temperature in the range $400^[\circ}C\~500^{\circ}C$ in AIP processing has a little influence on the TiN coating of the SKH51 steels.

Zirconala 용사된 Hastelloy X의 고온산화거동 (A Study on the high temperature oxidation behavior of zirconia plasma coatings on Haselloy X)

  • 김재철;신억균;박영규;최시경;김길무
    • 한국표면공학회지
    • /
    • 제30권4호
    • /
    • pp.285-297
    • /
    • 1997
  • Finned segment, with which are lined inner wall of the turbine combustors, are subject to severe degradation when they are exposed to a hostile environmment at elevated temperature. To protect the finned segment from this environment and to maintain good mechanical properties of components at high temperature, they are preferred to be coated. The most governing factor for the durability of coatings used in the high temperature is the microstructure of coatings; these are splat from, distibution of microcacks, size and distribution of pores, thickness of coating layer, adhesion between coating layer, and oxidation of band coating. In this study, based on the evaluation of the imported finned segment, new finned segment segment was manufactured with optimum plasma spraying parameters, and their properties were examined. Using $ZrO_2(8wt$Y_2O_3)$,/TEX> powder for ceramic coating and 67Ni-22Cr-10Al-0.5Y mixing powder for bond coating, thickness of ceramic and bond coating layer were varied in order to find optimum condition, the results showed that B2T4(bond coating : 100~250$\mu\textrm{m}$, ceramic coating : 250~300$\mu\textrm{m}$) was the best among the specimens tested. Compared to the imported finned segment, B2T4 has better bond strength, hardness, and isothermal and cyclic oxidation resistance.

  • PDF

피복재 공급온도가 광섬유 피복두께에 미치는 영향에 대한 전산유동해석 (NUMERICAL SIMULATION OF THE EFFECTS OF RESIN SUPPLY TEMPERATURE ON OPTICAL FIBER COATING THICKNESS)

  • 최진수;곽호상;김경진
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.96-99
    • /
    • 2011
  • Fiber coatings are essential in optical fiber manufacturing, since they provide the protective layers from the surface damages and the adequate fiber strength. Flow and temperature fields of coating liquid in a fiber coating applicator are numerically investigated by using a commercial CFD software. The main focus of this computational study is on the thermal effects by viscous dissipation and the effects of coating supply temperature on the final fiber coating thickness. The numerical results reveal that the thermal effects play a major role in the high-speed optical fiber coating process and give substantial influences on the determination of coating thickness. Changing the supply temperature of coating liquid is found to relieve the radial variation of coating liquid viscosity in the coating die and it can be an effective way to control the fiber coating thickness.

  • PDF