• Title/Summary/Keyword: high temperature and pressure

Search Result 4,093, Processing Time 0.033 seconds

A Study on a High-Temperature/High-Pressure Washing System in which High-Temperature Water is Generated in a Low-Pressure Boiler and High-Pressure Water is Generated Thereafter in a Compressor (저압보일러에서 고온의 온수 생성 후 압축기에서 고압수를 생성하는 고온·고압 세척시스템에 관한 연구)

  • Cho, Dong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.94-100
    • /
    • 2019
  • This study was conducted on a high-temperature/high-pressure washer in which low-pressure cold water in a boiler is heated to a temperature range of $70{\sim}80^{\circ}C$ by supplying diesel combustion heat. The high-temperature water is sent to a compressor to increase its pressure to 200 bar, thereby making high-temperature/high-pressure water, which is sprayed through a spray nozzle. In the results of this study, the spray temperature of the high-pressure washing was shown to be the highest when the ratio between the actual amount of combustible air and the theoretical amount of air was 1:1 and the energy consumption rate of the low-pressure boiler type high-pressure washer was shown to be much lower than that of the high-pressure boiler type high-pressure washer.

Aluminum ignition in laser-generated aluminum particles in high temperature and high pressure environment (고온 고압 환경에서 레이저를 이용한 알루미늄 입자 생성과 점화)

  • Lee, Kyung-Cheol;Taira, Tsubasa;Koo, Goon Mo;Lee, Jae Young;Park, Jeong Su;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.101-103
    • /
    • 2012
  • Characteristic of aluminum ignition under high temperature and high pressure is studied using lasers. The laser ablation method is used to generate aluminum particles exposed to a high pressure by using a nanosecond pulsed laser where the range of ablation pressure varies between 0.35 and 2.2 GPa. A $CO_2$ laser is used to supply radiative heat to the aluminum target surface for providing high temperature ranging between 5000~9300 Kelvin. The ignition is confirmed using spectroscopy analysis of AlO vibronic band 484 nm wavelength. Also the radiative temperature is measured in various high pressure range for tracing the ignition temperature in high pressure conditions.

  • PDF

Pressure and Temperature Control and HPHT Diamond Synthesis Using FB25 Type Belt Apparatus

  • Fukunaga, O.;Ko, Y.S.;Ohashi, N.
    • The Korean Journal of Ceramics
    • /
    • v.4 no.1
    • /
    • pp.5-8
    • /
    • 1998
  • Flat belt(FB) type high pressure apparatus has been succesfully utilized in various high pressure experimental stations in Korea and Japan to conduct HPHT (high pressure and high temperature) diamond synthesis. Present paper discusses pressure calibration of FB apparatus at high temperature to establish P-T condition of diamond synthesis. We also present some examples of controling P-T condition through careful experimental set-up of the high pressure sample cells. Finally we discuss reproducibility of pressure and temperature condition of the HPHT diamond synthesis.

  • PDF

Development of the high-temperature, high-pressure Dynamic pressure sensor with LGT (LGT를 이용한 고온, 고압용 동압 센서 개발)

  • Kwon, Hyuk Jae;Lee, Kyung Il;Kim, Dong Su;Kim, Young Deog;Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.17-21
    • /
    • 2012
  • This study developed a high-temperature, high-pressure dynamic pressure sensor using LGT(lanthanum gallium tantalate). The sensitivity of the fabricated dynamic pressure sensor was 2.1 mV/kPa and its nonlinearity was 2.5%FS. We confirmed that the high-temperature dynamic pressure sensor operated stably in high-temperature environment at $500^{\circ}C$. The developed dynamic pressure sensor using LGT is expected to be applicable not only to gas turbines but also in various industrial areas in duding airplanes and power stations.

Design Characteristics Analysis for Very High Temperature Reactor Components (VHTR 초고온기기 설계특성 분석)

  • Kim, Yong Wan;Kim, Eung Seon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.85-92
    • /
    • 2016
  • The operating temperature of VHTR components is much higher than that of conventional PWR due to high core outlet temperature of VHTR. Material requirements and technical issues of VHTR reactor components which are mainly dominated by high temperature service condition were discussed. The codification effort for high temperature material and design methodology are explained. The design class for VHTR components are classified as class A or B according to the recent ASME high temperature reactor design code. A separation of thermal boundary and pressure boundary is used for VHTR components as an elevated design solution. Key design characteristics for reactor pressure vessel, control rod, reactor internals, graphite reflector, circulator and intermediate heat exchanger were analysed. Thermo-mechanical analysis of the process heat exchanger, which was manufactured for test, is presented as an analysis example.

Manufacture of High-temperature High-pressure Vessel for Mixed Gas Performance Test via Optimized Design (최적화 설계를 통한 혼합가스 성능시험용 고온 고압 용기의 제작)

  • Ku, Hyoun-Kon;Ryu, Hyung-Min;Ahn, Jae-Woong;Bae, Young-Gwan;Kim, Jin-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.83-88
    • /
    • 2019
  • In this study, the high-temperature high-pressure vessel was successfully manufactured, which can be used to store pressurized air and to increase the temperature for the mix performance test of high-temperature high-pressure air with coolant (e.g., water). In this research, static structure analysis and transient thermal analysis were performed using the commercial software Midas NFX 2015 R1. Based on the results, the optimized pressure vessel design was carried out. As a result of the optimized design, the minimum stress and minimum weight were found at 120 mm of the vessel thickness, and the optimized pressure vessel was verified. Finally, through manufacture and performance test (e.g., the non-destructive inspection and hydraulic pressure test), the reliability and safety were validated for the designed pressure vessel.

Development of the High Temperature Silicon Pressure Sensor (고온용 실리콘 압력센서 개발)

  • Kim, Mi-Mook;Nam, Tae-Chul;Lee, Young-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.175-181
    • /
    • 2004
  • A pressure sensor for high temperature was fabricated by using a SDB(Silicon-Direct-Bonding) wafer with a Si/$SiO_{2}$/ Si structure. High pressure sensitivity was shown from the sensor using a single crystal silicon of the first layer as a piezoresistive layer. It also was made feasible to use under the high temperature as of over $120^{\circ}C$, which is generally known as the critical temperature for the general silicon sensor, by isolating the piezoresistive layer dielectrically and thermally from the silicon substrate with a silicon dioxide layer of the second layer. The pressure sensor fabricated in this research showed very high sensitivity as of $183.6{\mu}V/V{\cdot}kPa$, and its characteristics also showed an excellent linearity with low hysteresis. This sensor was usable up to the high temperature range of $300^{\circ}C$.

Characteristics of Impinging Diesel Spray on the Heated Flat Wall in High Temperature and High Pressure Environments (고온.고압 환경에서 가열평판에 충돌하는 디젤분무의 특성)

  • Im, Gyeong-Hun;Lee, Bong-Su;Kim, Jong-Hyeon;Gu, Ja-Ye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.627-633
    • /
    • 2001
  • Characteristics of a diesel spray impingement with the variation of ambient temperature, wall temperature and ambient pressure were investigated through shadowgraphy method by using high speed camera. The radial penetration of spray was increased with ambient temperature and wall temperature. It is resulted from the decrease of ambient gas density caused by the increase of temperature. The height of spray was also increased with ambient temperature and wall temperature, because the height of stagnate region is noticeably increased, although height of wall jet vortex is decreased. At the same ambient pressure, the area ratio of impinging spray of room temperature environment to high temperature environment was increased, as the temperature difference between room temperature and high temperature increases. And the increment of area ratio was higher at low ambient pressure than high ambient pressure.

A Study on the Temperature Behavior of Impinging Plate in Impinging Spray with Ultra High pressure (극초고압 충돌분무시 충돌면의 온도거동에 관한 연구)

  • Jeong, Dae-Yong;Kim, Hong-Jun;Lee, Jong-Tai
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.442-447
    • /
    • 2003
  • The characteristics of instantaneous wall-surface temperature of impinging plate in case of ultra high pressure injection have been measured and analyzed by using thin film instantaneous temperature probe and ultra high pressure injection equipment. The decreasing rate of temperature was greater in case of higher temperature of impinging plate. Temperature drop was largest at center of piston and it was slight for others. Instantaneous temperature decreases rapidly with increasing injection pressure. But above 2,500bar of injection pressure, the decreasing rates are slightly affected by increasing injection pressure.

  • PDF

Characteristics of Heptane Droplet Vaporization in High-Pressure and Temperature Flow Field (고온 고압 유동장에서 햅탄 액적의 기화 특성)

  • Ko, Jung-Bin;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.83-89
    • /
    • 2004
  • Vaporization characteristics of a liquid heptane droplet in high-pressure and temperature flow field are numerically studied. Variable thermodynamic and transport properties and high-pressure effects are taken into account in order to consider real gas effects. Droplet Vaporization in convective environments was investigated on the basis of droplet vaporization in quiescent and convective environment. In quiescent environments, droplet lifetime is directly proportional to pressure at the subcritical temperature range but it is inversely proportional to pressure at the supercritical temperature range. In convective environment, droplet deformation becomes stronger by increasing Reynolds number due to increase of velocity while droplet deformation is relatively weak at a higher pressure for the same Reynolds number cases.

  • PDF