• 제목/요약/키워드: high temperature X-ray diffraction

검색결과 835건 처리시간 0.026초

아크용해법에 의한 Ti-Cr-Nb합금의 제조와 수소와 특성 평가 (Evaluation of Hydrogenation Properties on Ti-Cr-Nb Alloys Manufactured by Arc Melting)

  • 이영근;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제19권6호
    • /
    • pp.482-489
    • /
    • 2008
  • Ti-Cr alloys consist of BCC solid solution, C36, C14 and C15 Laves phase at high temperature. Among others, the BCC solid solution phase was reported to have a high hydrogen storage capacity. However, activation, wide range of hysteresis at hydrogenation/dehydrogenation, and degradation of hydrogen capacity due to hydriding/dehydriding cycles must be improved for its application. In this study, to improve such problems, we added a Nb. For attaining target materials, Ti-10Cr-xNb(x=1, 3, 5wt.%) specimens were prepared by arc melting. The arc melting process was carried out under argon atmosphere. As-received specimens were characterized using XRD(X-ray diffraction), SEM(Scanning Electron Microscopy) with EDX(Energy Dispersive X-ray) and TG/DSC(Thermo Gravimetric Analysis/Differential Scanning Calorimetry). In order to examine hydrogenation behavior, the PCI(pressure-Composition-Isotherm) was performed at 293, 323, 373 and 423K.

Nanoporous carbon synthesized from grass for removal and recovery of hexavalent chromium

  • Pathan, Shahin A.;Pandita, Nancy S.
    • Carbon letters
    • /
    • 제20권
    • /
    • pp.10-18
    • /
    • 2016
  • Nanoporous carbon structures were synthesized by pyrolysis of grass as carbon precursor. The synthesized carbon has high surface area and pore volume. The carbon products were acid functionalized and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer–Emmett–Teller, transmission electron microscopy, and Energy Dispersive X-ray microanalysis. Acid functionalized nanoporous carbon was explored for use in removal of toxic Cr(VI) ions from aqueous media. An adsorption study was done as a function of initial concentration, pH, contact time, temperature, and interfering ions. The experimental equilibrium data fits well to Langmuir isotherm model with maximum monolayer adsorption capacity of 35.335 mg/g. The results indicated that removal obeys a pseudo-second-order kinetic model, and that equilibrium was reached in 10 min. A desorption study was done using NaOH. The results of the present study imply that acid functionalized nanoporous carbon synthesized from grass is an efficient, renewable, cost-effective adsorbent material for removal of hexavalent chromium due to its faster removal rate and reusability.

Characteristics of Sewage sludge, Its Incineration Ash, and Sintering Pellet

  • Lee, Ki-Hwan;Lee, Tae-Ho;Cho, Heon-Young;Han, Ki-Suk
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제4권4호
    • /
    • pp.215-220
    • /
    • 2000
  • This study on the incineration ash and sintering pellet from sewage sludge was carried out to evaluate the possibility of recycling in sewage sludge disposal. The samples used in this experiment were raw sewage sludge, its incineration ash, and sintering pellet. The characteristics of the three sample types were identified using X-ray diffraction(XRD), X-ray fluorescence(XRF), atomic absorption spectroscopy(AAS), and inductively coupled plasma spectroscopy(ICP). The chemical compositions of all three sample types were similar in their clay component, however, the sewage sludge had a high content of organic materials. From an analysis of the mineral content of the three sample types, the conversion of their compositions was found to be relative to temperature. Accordingly, incineration ash and sintering pellet both have potential for use as a functional construction material.

  • PDF

불소화된 $YBa_2Cu_3O_{7-y}$ 초전도체의 구조적, 전기적 성질에 관한 연구 (A study on the structural and electric properties of fluorinated $YBa_2Cu_3O_{7-y}$)

  • 김재욱;김채옥
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권4호
    • /
    • pp.404-409
    • /
    • 1996
  • The structural and electric properties of $Y_{1-x}$YbF$_{x}$Ba$_{2}$Cu$_{3}$O$_{7-y}$(x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) have been investigated by using XRD(X-ray diffraction), TMA(thennomechanical analysis), NMR(nuclear magnetic resonance) analysis and four probe method. $Y_{1-x}$YbF$_{x}$Ba$_{2}$Cu$_{3}$O$_{7-y}$ samples were prepared by conventional solid-state reaction method using $Y_{2}$O$_{3}$, BaCO$_{3}$, CuO and YbF$_{3}$ power. TMA and high temperature XRD results shows that orthorhombic to tetragonal phase transition occurs in the unfluorinated 1-2-3 sample while the phase change is not observed in the fluorinated 1-2-3 samples. Superconducting transition temperature(T$_{c}$) increases with increasing YbF$_{3}$ content ; T$_{c}$, of the sample reaching maximum of 102K for x=0.3, and then decreases with further increasing YbF$_{3}$ content. The structural analysis and T$_{c}$ results shows that the fluorine doping stabilize the orthorhombic phase, together with the increase in T$_{c}$.}$ c/.TEX> c/.

  • PDF

MBE growth and magnetic properties of epitaxial FeMn2O4 film on MgO(100)

  • Duong, Van Thiet;Nguyen, Thi Minh Hai;Nguyen, Anh Phuong;Dang, Duc Dung;Duong, Anh Tuan;Nguyen, Van Quang;Cho, Sunglae
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.318.2-318.2
    • /
    • 2016
  • FeM2X4 spinel structures, where M is a transition metal and X is oxygen or sulfur, are candidate materials for spin filters, one of the key devices in spintronics. Both the Fe and M ions can occupy tetrahedral and octahedral sites; therefore, these types of compounds can display various physical and chemical properties [1]. On the other hand, the electronic and magnetic properties of these spinel structures could be modified via the control of cation distribution [2, 3]. Among the spinel oxides, iron manganese oxide is one of promising materials for applications. FeMn2O4 shows inverse spinel structure above 390 K and ferrimagnetic properties below the temperature [4]. In this work, we report on the structural and magnetic properties of epitaxial FeMn2O4 thin film on MgO(100) substrate. The reflection high energy electron diffraction (RHEED) and X-ray diffraction (XRD) results indicated that films were epitaxially grown on MgO(100) without the impurity phases. The valance states of Fe and Mn in the FeMn2O4 film were carried out using x-ray photoelectron spectrometer (XPS). The magnetic properties were measured by vibrating sample magnetometer (VSM), indicating that the samples are ferromagnetic at room temperature. The structural detail and origin of magnetic ordering in FeMn2O4 will be discussed.

  • PDF

650 ℃의 SO2 가스 환경 하에서 T22와 T92 강의 고온 부식특성 (High-Temperature Corrosion Characteristics of T22 and T92 Steel in SO2-Containing Gas at 650 ℃)

  • 정광후;김성종
    • Corrosion Science and Technology
    • /
    • 제18권6호
    • /
    • pp.285-291
    • /
    • 2019
  • In this study, the corrosion characteristics of T22 and T92 steel were investigated in 6O2 + 16CO2 + 2SO2 gas environment at 650 ℃. Corrosion characteristics were characterized by weight gain, oxide layer thickness, scanning electron microscope, optical microscope, energy dispersive X-ray spectroscopy, and X-ray diffraction. T22 and T92 steel tended to stagnate oxide layer growth over time. Oxidation kinetics were analyzed using the data of oxide layer thickness, and a regression model was presented. The regression model was significantly acceptable. The corrosion rate between the two steels through the regression model showed significant difference. The T92 steel was approximately twice as large as the time exponent and showed very good corrosion resistance compared to the T22 steel. In both steels, the oxide layer mainly formed a Fe-rich oxide layer composed of hematite (Fe2O3), magnetite (Fe3O4), and spinel (FeCr2O4). Sulfide segregation occurred in the oxide layer due to SO2 gas. However, the locations of segregation for the T22 and T92 steel were different.

THE SOLAR-B MISSION

  • ICHIMOTO KIYOSHI;TEAM THE SOLAR-B
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.307-310
    • /
    • 2005
  • The Solar-B is the third Japanese spacecraft dedicated for solar physics to be launched in summer of 2006. The spacecraft carries a coordinated set of optical, EUV and X-ray instruments that will allow a systematic study of the interaction between the Sun's magnetic field and its high temperature, ionized atmosphere. The Solar Optical Telescope (SOT) consists of a 50cm aperture diffraction limited Gregorian telescope and a focal plane package, and provides quantitative measurements of full vector magnetic fields at the photosphere with spatial resolution of 0.2-0.3 arcsec in a condition free from terrestrial atmospheric seeing. The X-ray telescope (XRT) images the high temperature (0.5 to 10 MK) corona with improved spatial resolution of approximately 1 arcsec. The Extreme Ultraviolet Imaging Spectrometer (EIS) aims to determine velocity fields and other plasma parameters in the corona and the transition region. The Solar-B telescopes, as a whole, will enable us to explore the origins of the outer solar atmosphere, the corona, and the coupling between the fine magnetic structure at the photosphere and the dynamic processes occurring in the corona. The mission instruments (SOT/EIS/XRT) are joint effort of Japan (JAXA/NAO), the United States (NASA), and the United Kingdom (PPARC). An overview of the spacecraft and its mission instruments are presented.

SO2 가스 환경 하에서 1.25Cr-0.5Mo 강의 부식 및 강도 저하 특성 (Corrosion and Strength Degradation Characteristics of 1.25Cr-0.5Mo Steel under SO2 Gas Environment)

  • 정광후;김성종
    • 한국표면공학회지
    • /
    • 제51권3호
    • /
    • pp.149-156
    • /
    • 2018
  • The corrosion and strength degradation characteristics of 1.25Cr-0.5Mo steels were studied under $650^{\circ}C$ in $76%N_2+6%O_2+16%CO_2+2%SO_2$ gas condition up to 500 hrs. Corroded specimens were characterized by weight gain, scanning electron microscope(SEM), energy dispersive X-ray spectroscopy(EDS), and X-ray diffraction(XRD). The tensile test was conducted to evaluate the mechanical strength and fracture mode with corrosion at high temperature. As the results of the experiments, thick Fe-rich oxide layers over $200{\mu}m$ were formed on the surface within 500 hrs. The thick oxide layers are formed with reduction of the cross-sectional area of the specimens. Thus, the strength tended to decrease with reduction of the cross-sectional area.

Effectiveness of Ni-based and Fe-based cladding alloys in delaying hydrogen generation for small modular reactors with increased accident tolerance

  • Alan Matias Avelar;Fabio de Camargo;Vanessa Sanches Pereira da Silva;Claudia Giovedi;Alfredo Abe;Marcelo Breda Mourao
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.156-168
    • /
    • 2023
  • This study investigates the high temperature oxidation behaviour of a Ni-20Cr-1.2Si (wt.%) alloy in steam from 1200 ℃ to 1350 ℃ by Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD). The results demonstrate that exposed Ni-based alloy developed a thin oxide scale, consisted mainly of Cr2O3. The oxidation kinetics obtained from the experimental results was applied to evaluate the hydrogen generation considering a simplified reactor core model with different cladding alloys following an unmitigated Loss-Of-Coolant Accident (LOCA) scenario in a hypothetical Small Modular Reactor (SMR). Overall, experimental data and simulations results show that both Fe-based and Ni-based alloys may enhance cladding survivability, delaying its melting, as well as reducing hydrogen generation under accident conditions compared to Zr-based alloys. However, a substantial neutron absorption occurs when Ni-based alloys are used as cladding for current uranium-dioxide fuel systems, even when compared to Fe-based alloys.

Viscous Flow Behavior of (90-x)SiO2-xNa2O-10RO (x = 15-40) Glasses with Low Sintering Temperature

  • Lee, Hansol;Park, Hyun-A;Kim, Hyeong-Jun;Chung, Woon Jin
    • 한국세라믹학회지
    • /
    • 제56권2호
    • /
    • pp.167-172
    • /
    • 2019
  • Silicate glasses with varying SiO2 and Na2O contents were prepared and their viscous flow property at the elevated temperature was studied. When the glass powders were packed and sintered at 550℃ to examine their feasibility as a low sintering temperature glass frit, contrary to expectations, glasses with lower SiO2 content than 60 mol% showed no vitrification after sintering. High temperature microscopy revealed the viscous flow change of the silicate glasses with varying temperature and duration time and also indicated that the viscous flow was limited at low SiO2 content. X-ray diffraction (XRD) on the sintered samples and Raman spectroscopy were carried out to shed light on the compositional dependency of viscous flow of silicate glasses.