• Title/Summary/Keyword: high strength-high electrical conductivity

Search Result 154, Processing Time 0.028 seconds

Thermal conductivity and properties of sheath alloy for High-$T_c$ superconductor tape (고온초전도 선재용 피복합금의 열전도도 측정 및 특성평가)

  • 박형상;지봉기;김중석;임준형;오승진;오승진;주진호;나완수;유재무
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.8
    • /
    • pp.711-717
    • /
    • 2000
  • Effect of alloying element additions to Ag on thermal conductivity electrical conductivity and mechanical properties of sheath materials for BSCCO tapes has been characterized. The thermal conductivity at low temperature range(10~300K) of Ag alloys were evaluated by both direct and indirect measurement techniques and compared with each other. It was observed that thermal conductivity decreased with increasing the content of alloying elements such as Au, Pd and Mg. Thermal conductivity of pure Ag at 30 K was measured to be 994.0 W/m.K on the other hand the corresponding values of A $g_{0.9995}$/M $g_{0.0005}$, A $g_{0.974}$/A $u_{0.025}$/M $g_{0.001}$, A $g_{0.973}$/Au.0.025//M $g_{0.002}$, and A $g_{0.92}$/P $d_{0.06}$/M $g_{0.02}$ were 342.6, 62.1, 59.2, 28.9 W/m.K respectively indicating 3 to 30 times lower than that of pure Ag. In addition alloying element additions to Ag improved mechanical strength while reduced elongation probably due to the strengthening mechanisms by the presence of additive atoms.s.

  • PDF

Study on Mechanical and Electrical Properties of Expanded Graphite/Carbon fiber hybrid Conductive Polymer Composites (팽창흑연/탄소섬유 혼합 보강 전도성 고분자 복합재료의 특성 평가)

  • Oh, Kyung-Seok;Heo, Seong-Il;Yun, Jin-Chul;Han, Kyung-Seop
    • Composites Research
    • /
    • v.20 no.6
    • /
    • pp.1-7
    • /
    • 2007
  • Expanded graphite/carbon fiber hybrid conductive polymer composites were fabricated by the preform molding technique. The conductive fillers were mechanically mixed with a phenol resin to provide an electrical property to composites. The conductive filler loading was fixed at 60wt.% to accomplish a high electrical conductivity. Expanded graphites were excellent in forming a conductive networking by direct contacts between them while it was hard to get the high flexural strength over 40MPa with using only expanded graphite and phenol resin. In this study, carbon fibers were added in composites to compensate the weakened flexural strength. The effect of carbon fibers on the mechanical and electrical properties was examined according to the weight ratio of carbon fiber. As the carbon fiber ratio increased, the flexural strength increased until the carbon fiber ratio of 24wt.%, and then decreased afterward. The electrical conductivity gradually decreased as the increase of the carbon fiber ratio. This was attributed to the non-conducting regions generated among the carbon fibers and the reduction of the direct contact areas between expanded graphites.

Electrical Insulation Properties of Nanocomposites with SiO2 and MgO Filler

  • Jeong, In-Bum;Kim, Joung-Sik;Lee, Jong-Yong;Hong, Jin-Woong;Shin, Jong-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.6
    • /
    • pp.261-265
    • /
    • 2010
  • In this paper, we attempt to improve the electrical characteristics of epoxy resin at high temperature (above $80^{\circ}C$) by adding magnesium oxide (MgO), which has high thermal conductivity. Scanning electron microscopy (SEM) of the dispersion of specimens with added MgO reveals that they are evenly dispersed without concentration. The dielectric breakdown characteristics of $SiO_2$ and MgO nanocomposites are tested by measurements at different temperatures to investigate the filler's effect on the dielectric breakdown characteristics. The dielectric breakdown strength of specimens with added $SiO_2$ decreases slowly below $80^{\circ}C$ (low temperature) but decreases rapidly above $80^{\circ}C$ (high temperature). However, the gradient of the dielectric breakdown strength of specimens with added MgO is slow at both low and high temperatures. The dielectric breakdown strength of specimens with 0.4 wt% $SiO_2$ is the best among the specimens with added $SiO_2$, and that of specimens with 3.0 wt% and 5.0 wt% MgO is the best among those with added MgO. Moreover, the dielectric strength of specimens with 3.0 wt% MgO at high temperatures is approximately 53.3% higher than that of specimens with added $SiO_2$ at $100^{\circ}C$, and that of specimens with 5.0 wt% of MgO is approximately 59.34% higher under the same conditions. The dielectric strength of MgO is believed to be superior to that of $SiO_2$ owing to enhanced thermal radiation because the thermal conductivity rate of MgO (approximately 42 $W/m{\cdot}K$) is approximately 32 times higher than that of $SiO_2$ (approximately 1.3 $W/m{\cdot}K$). We also confirmed that the allowable breakdown strength of specimens with added MgO at $100^{\circ}C$ is within the error range when the breakdown probability of all specimens is 40%. A breakdown probability of up to 40% represents a stable dielectric strength in machinery and apparatus design.

Effects of Mg Content on the Properties and Casting Characteristics of Al-2Zn-0.2Fe-xMg Alloys (Al-2Zn-0.2Fe-xMg 합금의 물성 및 주조특성에 미치는 Mg함량의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik;Kim, Ki-Tae;Ko, Se-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.32 no.2
    • /
    • pp.86-90
    • /
    • 2012
  • Aluminium-silicon based casting alloys have received an attention for high electrical and thermal conductivity applications, however relatively low conductivity of Al-Si alloys often limits the application. Efforts have been made to develop new high conductivity aluminium casting alloys containing no or less silicon. In this study Al-Zn-Fe based alloys were selected as the new alloys, and the effect of Mg additions on their properties and casting characteristics were investigated. As the magnesium content was increased, the tensile strength of Al-2Zn-0.2Fe based alloy was remarkably increased, while the electrical conductivity was deteriorated. It was observed that the fluidity of the alloys was generally inversely proportional to the Mg content but the hot cracking resistance was rather proportional to it. Cooling curve analyses were carried out to measure the actual solidification range and dendrite coherency temperature.

Temperature Dependence on dielectric breakdown strength of Epoxy Nano-Composites depending on MgO (MgO를 첨가한 에폭시 나노 컴퍼지트의 절연파괴강도 온도의존성)

  • Jeong, In-Bum;Han, Hyun-Seok;Lee, Young-Sang;Cho, Kyung-Soon;Shin, Jong-Yeol;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.48-48
    • /
    • 2010
  • In this paper, we have investigated temperature dependence of dielectric breakdown voltage at epoxy with added nano-filler(MgO), which is used as a filler of epoxy additives for HVDC(high voltage direct current) submarine cable insulating material with high thermal conductivity and restraining tree to improve electrical properties of epoxy resin in high temperature region. In order to find dispersion of the specimen, the cross sectional area of nano-composite material is observed by using the SEM(Scanning Electron Microscope) and it is conformed that each specimen is evenly distributed without the cohesion. As a result, it is confirmed that the strength of breakdown of all specimen at 50 [$^{\circ}C$] decreased more than that of the dielectric breakdown strength at room temperature. When temperature increases from 50 [$^{\circ}C$] to 100 [$^{\circ}C$], we have confirmed that breakdown strength of virgin specimen decreases, but specimens with added MgO show constant dielectric breakdown strength.

  • PDF

Electrical property of polyvinylalcohol (Polyvinylalcohol의 전기적 특성)

  • 김현철;구할본
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.184-189
    • /
    • 1995
  • The electrical property of ultra thin PVA films(several hundreds .angs.-several .mu.m in thickness) formed by sphere bulb blowing technique, has been studied. The electrical conductivity of relatively thick films(>several thousands .angs.) has been very high and enhanced by the exposure either to high humidity of air or $NH_3$, which can be explained in terms of the role of ionic transport. The use of PVA films as NH$_{3}$ sensor is also proposed. In ultra thin PVA films less than 1500.angs., two conducting states ; high conducting and low conducting states, are observed. The nonlinear current-voltage characteristics in the low conducting state and the switching between these two states are also confirmed. These properties are discussed in terms of electronic conduction processes. The breakdown strength of the ultra thin PVA film is found to be very high(-30MV/cm), supporting the electron avalanche process in a thick polymer films.

  • PDF

Properties and Casting Characteristics of Al-Zn-Fe-Si Alloys (Al-Zn-Fe-Si 합금의 물성 및 주조특성)

  • Yun, Ho-Seob;Kim, Jeong-Min;Park, Joon-Sik;Kim, Ki-Tae
    • Journal of Korea Foundry Society
    • /
    • v.33 no.1
    • /
    • pp.8-12
    • /
    • 2013
  • Although aluminum-silicon based commercial casting alloys have been used in applications that demand high electrical or thermal conductivity, new aluminum casting alloys that possess higher conductivities are currently required for advanced applications. Therefore, there is much research into the development of new high conductivity aluminum casting alloys that contain lower amounts of or no silicon. In this research, the properties and casting characteristics of Al-Zn-Fe-Si alloys with various Fe and Si contents were investigated. Two types of AlFeSi phases were formed depending on the Fe and Si contents. As the silicon content increased, the tensile strength of the Al-Zn-Fe-Si alloy increased slightly, while the electrical conductivity decreased slightly. It was also observed that both the fluidity and hot cracking susceptibility of the investigated alloys were closely related to the formation of the AlFeSi phases.

Silicon Nitride Composites with Different Nanocarbon Additives

  • Balazsi, Csaba
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.352-362
    • /
    • 2012
  • This paper explores the use of a variety of carbon nanoparticles to impart electrical, thermal conductivity, good frictional properties to silicon nitride matrices. We used the highly promising types of carbon as carbon nanotubes, exfoliated graphene and carbon black nanograins. A high-efficiency attritor mill has also been used for proper dispersion of second phases in the matrix. The sintered silicon nitride composites retained the mechanical robustness of the original systems. Bending strength as high as 700 MPa was maintained and an electrical conductivity of 10 S/m was achieved in the case of 3 wt% multiwall carbon nanotube addition. Electrically conductive silicon nitride ceramics were realized by using carbon nanophases. Examples of these systems, methods of fabrication, electrical percolation, mechanical, thermal and tribological properties are discussed.

The New Aluminum Development for Condenser Tube (Condenser Tube용 신알루미늄합금 개발)

  • Kim, Shang-Shu;Koo, Jae-Kwan;Kim, Byumg-Geol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.44-44
    • /
    • 2010
  • 냉방기기의 고성능소형화를 촉진시키기 위해서는 고강도 고열전도성 알루미늄합금소재의 개발이 시급하다. Condenser용 튜브부품은 향후 더욱 소형화, 경량화 하는 방향으로 전개되며, 결국 목표로 하는 컨덴서용 튜브 소재적인 측면에서의 기능은 고강도, 고열전도, 압출성이 우수하여야 한다.

  • PDF

Mechanical and Electrical Properties of an Al-Fe-Mg-Cu-B System Alloy for Electrical Wire Fabricated by Wire Drawing (인발가공에 의해 제조된 전선용 Al-Fe-Mg-Cu-B계 합금의 기계적 및 전기적 특성)

  • Jung, Chang-Gi;Hiroshi, Utsunomiya;Son, Hyeon-Taek;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.597-602
    • /
    • 2017
  • In this study, an Al-0.7wt%Fe-0.2wt%Mg-0.2wt%Cu-0.02wt%B alloy was designed to fabricate an aluminum alloy for electrical wire having both high strength and high conductivity. The designed Al alloy was processed by casting, extrusion and drawing processes. Especially, the drawing process was done by severe deformation of a rod with an initial diameter of 12 mm into a wire of 2 mm diameter; process was equivalent to an effective strain of 3.58, and the total reduction in area was 97 %. The drawn Al alloy wire was then annealed at various temperatures of 200 to $400^{\circ}C$ for 30 minutes. The mechanical properties, microstructural changes and electrical properties of the annealed specimens were investigated. As the annealing temperature increased, the tensile strength decreased and the elongation increased. Recovery or/and recrystallization occurred as annealing temperature increased, and complete recrystallization occurred at annealing temperatures over $300^{\circ}C$. Electric conductivity increased with increasing temperature up to $250^{\circ}C$, but no significant change was observed above $300^{\circ}C$. It is concluded that, from the viewpoint of the mechanical and electrical properties, the specimen annealed at $350^{\circ}C$ is the most suitable for the wire drawn Al alloy electrical wire.