• Title/Summary/Keyword: high strength materials

Search Result 3,818, Processing Time 0.033 seconds

Mechanical Properties of High Strength Polymer Concrete Using Unsaturated Polyester Resin (불포화 폴리에스터 수지를 이용한 고강도 폴리머 콘크리트의 역학적 특성)

  • 연규석;김관호;이필호;김동수;박윤제
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.131-141
    • /
    • 1994
  • This study was carried out to develop a procedural method to produce high strength polymer concrete using unsaturated polyt.ster resin and to examine its mechanical properties. Various mechanical properties were analyzed with respect to materials and additives. A method to produce high strength polymer concrete was successfully developed. Comperssive strength of $1,291~1,445 kg/cm^2$, splitting tensile strength of $106~145 kg/cm^2$ and flexural strength of $182~235 kg/cm^2$, at age of 7days wer-e achieved from the cylinderical ;md beam specimen prepared with the method. Modulus of elasticity. Poisson's rntio and the ultirnate corn pressive strain of cylinderical specimen were $2.8~3.8{\times}10^5\;kg/cm^2$. 0.21~0.32, and 0.005~0. 0065, respectively. Modulus of elasticity of the polymer concrete was smaller than that of hlgh strength cement concrete while the maximum compressive strain was very larger than that of high strength cement concrete.

Cost optimization of reinforced high strength concrete T-sections in flexure

  • Tiliouine, B.;Fedghouche, F.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.65-80
    • /
    • 2014
  • This paper reports on the development of a minimum cost design model and its application for obtaining economic designs for reinforced High Strength Concrete (HSC) T-sections in bending under ultimate limit state conditions. Cost objective functions, behavior constraint including material nonlinearities of steel and HSC, conditions on strain compatibility in steel and concrete and geometric design variable constraints are derived and implemented within the Conjugate Gradient optimization algorithm. Particular attention is paid to problem formulation, solution behavior and economic considerations. A typical example problem is considered to illustrate the applicability of the minimum cost design model and solution methodology. Results are confronted to design solutions derived from conventional design office methods to evaluate the performance of the cost model and its sensitivity to a wide range of unit cost ratios of construction materials and various classes of HSC described in Eurocode2. It is shown, among others that optimal solutions achieved using the present approach can lead to substantial savings in the amount of construction materials to be used. In addition, the proposed approach is practically simple, reliable and computationally effective compared to standard design procedures used in current engineering practice.

Effect of Si and Ca Addition on the Strengthening Behavior of Gravity-cast AM60 Magnesium Alloys (중력주조 AM60 마그네슘 합금의 강화 거동에 미치는 Si 및 Ca 첨가영향)

  • Kim, Jae-Woo;Kim, Do-Hyang;Shin, Kwang-Seon
    • Journal of Korea Foundry Society
    • /
    • v.18 no.4
    • /
    • pp.364-372
    • /
    • 1998
  • Effects of Si and Ca additions on the mechanical properties of AM60 based Mg alloys have been investigated. Hardness of the AM60 based Mg alloys reached a maximum value after aging for approximately 33 hours but the amount of hardness increase was negligible. The poor age hardening response of the alloys was due to low Al content, which implies that Al content must be >6 wt.% to observe age hardening effect. The tensile and yield strength increased with increasing Al, Si, and Ca content but elongation decreased with increasing Al and Si content. The best mechanical properties obtained in AM 40-2.5Si-0.2Ca alloy after T4 heat treatment were as follows; tensile strength 193.4 MPa, yield strength 79.2 MPa, and elongation 11.2%. High temperature property obtained from creep test was also improved by introducing $Mg_2Si$ which has high hardness, high melting temperature and low thermal expansion coefficient.

  • PDF

Effect of N2/Ar flow rates on Si wafer surface roughness during high speed chemical dry thinning

  • Heo, W.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.128-128
    • /
    • 2010
  • In this study, we investigated the evolution and reduction of the surface roughness during the high-speed chemical dry thinning process of Si wafers. The direct injection of NO gas into the reactor during the supply of F radicals from NF3 remote plasmas was very effective in increasing the Si thinning rate, due to the NO-induced enhancement of the surface reaction, but resulted in the significant roughening of the thinned Si surface. However, the direct addition of Ar and N2 gas, together with NO gas, decreased the root mean square (RMS) surface roughness of the thinned Si wafer significantly. The process regime for the increasing of the thinning rate and concomitant reduction of the surface roughness was extended at higher Ar gas flow rates. In this way, Si wafer thinning rate as high as $20\;{\mu}m/min$ and very smooth surface roughness was obtained and the mechanical damage of silicon wafer was effectively removed. We also measured die fracture strength of thinned Si wafer in order to understand the effect of chemical dry thinning on removal of mechanical damage generated during mechanical grinding. The die fracture strength of the thinned Si wafers was measured using 3-point bending test and compared. The results indicated that chemical dry thinning with reduced surface roughness and removal of mechanical damage increased the die fracture strength of the thinned Si wafer.

  • PDF

The Hydrogen Behavior of Surface Layers of High Strength DP Thin Sheet Steels for Automobile (자동차 박강판용 고강도 DP강 표면층의 수소거동)

  • Park, Jae-Woo;Kang, Kae-Myung
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.6
    • /
    • pp.38-43
    • /
    • 2010
  • According to the lack of resources and the stringency of environmental regulations, a study of the high strength thin plate sheet steels for automobile have been become an important issue for automobile industry. However, the problem of hydrogen embrittlement of high strength sheet steels was concerned with the degradation of mechanical properties. Therefore, we studied the hydrogen behavior of surface layers of 590MPa DP sheet steels on development using by relationship the microstructure of subsurface and the distribution of micro hardnesses. Hydrogen was charged into the specimens using by the cathodic electrolytic method. The behavors of under surface layers were investigated by the observation of microstructures and the micro vickers hardness test with the amount of hydrogen charging with hydrogen charging conditions.

Evaluation of Wear Characteristics on Ti/Cr PVD Coatings of Cold Press Die for the Forming of UHSS (초고장력강판 성형용 냉간 프레스 금형의 Ti/Cr계 PVD코팅에 대한 마모 특성 평가)

  • Heo, J.Y.;Youn, K.T.;Song, J.S.;Kang, I.S.;Yoon, I.C.;Park, C.D.
    • Transactions of Materials Processing
    • /
    • v.31 no.4
    • /
    • pp.186-193
    • /
    • 2022
  • The application of UHSS sheet is being expanded up to 50% to reduce the weight of automobiles and improve safety. However, due to the high strength and low elongation of the ultra-high tensile strength steel sheet, product defects such as spring back and mold defects such as cracks and chippings also occur. In this study, Pin/Ring on Disc and Spiral wear tests were conducted to evaluate the durability of Ti/Cr-coated molds for forming 1.2GPa grade UHSS sheets. Component analysis and thickness were measured for each coating layer, and hardness and adhesion were investigated to determine mechanical properties. Combining the results of various wear tests, it was found that the TiAlN coating had the best wear and sticking resistance.

A Study on Fatigue Characteristics and Analysis for A 182 F6a Class 4 Materials (A182 F6A Class4 재료의 피로특성과 피로해석에 대한 연구)

  • Jin-Kyung Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.585-589
    • /
    • 2023
  • Unlike general carbon steel, stainless steel's mechanical properties change depending on the content of chromium and nickel. In this study, since stainless steel for high-temperature pressure container parts is used as shafts, the fatigue strength and fatigue limit of the materials were evaluated using a rotational bending fatigue test. Meanwhile, fatigue analysis was conducted under the same conditions as the specimen for structural analysis and fatigue analysis of stainless steel for high-temperature pressure container parts. Using the fatigue analysis results, we tried to derive the life of the material and the safety factor for each part. As a result of performing a fatigue test by processing a specimen for the fatigue test of A182 F6A stainless steel, the fatigue limit was 548 MPa. The ratio between the tensile strength and fatigue limit of the material was 0.545, representing 54.5% of the tensile strength.

Fabrication of 3D Aligned h-BN based Polymer Composites with Enhanced Mechanical Properties for Battery Housing (3차원으로 정렬된 h-BN을 이용한 향상된 기계적 특성을 가지는 배터리 하우징용 고분자 복합소재 제작)

  • Kiho Song;Hyunseung Song;Sang In Lee;Changui Ahn
    • Journal of Powder Materials
    • /
    • v.31 no.4
    • /
    • pp.329-335
    • /
    • 2024
  • As the demand for electric vehicles increases, the stability of batteries has become one of the most significant issues. The battery housing, which protects the battery from external stimuli such as vibration, shock, and heat, is the crucial element in resolving safety problems. Conventional metal battery housings are being converted into polymer composites due to their lightweight and improved corrosion resistance to moisture. The transition to polymer composites requires high mechanical strength, electrical insulation, and thermal stability. In this paper, we proposes a high-strength nanocomposite made by infiltrating epoxy into a 3D aligned h-BN structure. The developed 3D aligned h-BN/epoxy composite not only exhibits a high compressive strength (108 MPa) but also demonstrates excellent electrical insulation and thermal stability, with a stable electrical resistivity at 200 ℃ and a low thermal expansion coefficient (11.46×ppm/℃), respectively.

A Study of the Effect of Magnetic Fields Using Welding Process (용접 공정에서 자기력의 효과에 대한 연구)

  • Cho, Hong Seok;Park, Ik Keun;Lee, Wooram
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.32-43
    • /
    • 2014
  • Welding and joining technology has become a core field. Therefore it is more widely applied to nonferrous metals, inorganic and polymeric materials. That is because the high performance, high function and diversification trend of materials used as industrial technology develops. In the laser welding process, STS 304 and SCP1-S were used as the base materials, the output density was fixed $7MW/cm^2$, the protective gas was argon(Ar) and the transfer rate was fixed 5 mm/sec. and it was progressed while the magnetic field is gradually increasing by 100 mT ranging 0 to 400 mT. The tensile test showed in average about 6 % tensile strength improvement in the case of the laser welding process using the magnetic fields. In the shielded metal arc welding process using SPHC only or the combination of SPHC+STS304 as base materials. The electric current was set at 80 Amperes and the protective gas used argon(Ar) the same as the laser welding process and the strength of magnetic fields. In the shielded metal arc welding process using the magnetic fields, the tensile tests showed about 5 % tensile strength improvement in the case of using SPHC only, 3 % tensile strength improvement in the case of using the combination of SPHC+ STS304. In comparing the results of numerical analysis to the results of experimental tests, it was revealed that the temperature, thermal stress distribution and the behavior of molten pool were similar to those of real tests. Consequently, it may be considered that the numerical assumption and the analytical model used in this study were reasonable.