• Title/Summary/Keyword: high strength materials

Search Result 3,818, Processing Time 0.039 seconds

Evaluation of Flexural Performance of Eco-Friendly Inorganic Binding Material RC Beams Using Sodium Activator (나트륨계 알칼리 활성화제를 사용한 친환경 무기결합재 철근콘크리트 보의 휨성능 평가)

  • Ha, Gee-Joo;Kim, Jin-Hwan;Jang, Kie-Chang
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.261-269
    • /
    • 2013
  • In this study, it was developed eco-friendly inorganic binding material concrete using ground granulated blast furnace slag and alkali activator (water glass, sodium hydroxides). Eight reinforced concrete beam using inoganic binding material concrete were constructed and tested under monotonic loading. The major variables were mixture ratio of alkali activator, type of admixture and admixture. Experimental programs were carried out to improve and evaluate the flexural performance of such test specimens, such as the load-displacement, the failure mode, the maximum load carrying capacity, and ductility capacity. All the specimens were modeled in scale-down size. The eco-friendly concrete using inorganic binding material encouraged alkali activation reaction was rapidly hardening speed and showed possibility as a high strength concrete. Also, the RC beams using new materials showed similar behavior and failed similarly with RC beam used portland cement. It is thought that eco-friendly inorganic binding material concrete can be used with construction material and product as a basic research to replace cement concrete. If there is application to structures in PC member as well as production of 2nd concrete product, it could be improved the productivity and reduction of construction duration etc.

Feasibility and Effects of a Postoperative Recovery Exercise Program Developed Specifically for Gastric Cancer Patients (PREP-GC) Undergoing Minimally Invasive Gastrectomy

  • Cho, In;Son, Younsun;Song, Sejong;Bae, Yoon Jung;Kim, Youn Nam;Kim, Hyoung-Il;Lee, Dae Taek;Hyung, Woo Jin
    • Journal of Gastric Cancer
    • /
    • v.18 no.2
    • /
    • pp.118-133
    • /
    • 2018
  • Purpose: Exercise intervention after surgery has been found to improve physical fitness and quality of life (QOL). The purpose of this study was to investigate the feasibility and effects of a postoperative recovery exercise program developed specifically for gastric cancer patients (PREP-GC) undergoing minimally invasive gastrectomy. Materials and Methods: Twenty-four patients treated surgically for early gastric cancer were enrolled in the PREP-GC. The exercise program comprised sessions of In-hospital Exercise (1 week), Home Exercise (1 week), and Fitness Improvement Exercise (8 weeks). Adherence and compliance to PREP-GC were evaluated. In addition, body composition, physical fitness, and QOL were assessed during the preoperative period, after the postoperative recovery (2 weeks after surgery), and upon completing the PREP-GC (10 weeks after surgery). Results: Of the 24 enrolled patients, 20 completed the study without any adverse events related to the PREP-GC. Adherence and compliance rates to the Fitness Improvement Exercise were 79.4% and 99.4%, respectively. Upon completing the PREP-GC, patients also exhibited restored cardiopulmonary function and muscular strength, with improved muscular endurance and flexibility (P<0.05). Compared to those in the preoperative period, no differences were found in symptom scale scores measured using the European Organization for Research and Treatment of Cancer (EORTC) Core Quality of Life Questionnaire (QLQ-C30) and Quality of Life Questionnaire-Stomach Cancer-Specific Module (QLQ-STO22); however, higher scores for global health status and emotional functioning were observed after completing the PREP-GC (P<0.05). Conclusions: In gastric cancer patients undergoing minimally invasive gastrectomy, PREP-GC was found to be feasible and safe, with high adherence and compliance. Although randomized studies evaluating the benefits of exercise intervention during postoperative recovery are needed, surgeons should encourage patients to participate in systematic exercise intervention programs in the early postoperative period (Registered at the ClinicalTrials.gov, NCT01751880).

Development of Hydroponic Media Using Fly Ash and Clay System Cultures (양액재배용 석탄회-점토계 배지 개발)

  • 김일섭;강위수;신대용;류근창
    • Journal of Bio-Environment Control
    • /
    • v.9 no.1
    • /
    • pp.47-59
    • /
    • 2000
  • In order to investigate the physical and chemical properties of artificial culture media, the specimens were substituted with 5~20% clay, 10~30%(w) quick lime, 5~l5%(w) burnt plaster and 10%(w) sawdust. Fly ash-clay bodies were sintered at 1,050~1,20$0^{\circ}C$ and then their properties were determined. It was found that 90FA10JC(fly ash +clay(90:10, %(w)) specimen sintered at 1,15$0^{\circ}C$ for 10 min. had good physical and chemical properties. When this composition was supplement with 10%(w) sawdust, bulk density water absorption, apparent porosity, compressive strength and pH after 240 hrs curing time were 1.14, 54.4%, 39.5%, 54 kgf.cm$^{-2}$ and 7.1 respectively. The physical properties of fly ash-quick lime-burnt plaster system specimens were superior to FAJC systems. However, this composition we not suitable as a artificial culture media because of its high pH. In this study, it was shown that 90FA10JC10SD(90FA10JC +10%(w) sawdust) system exhibited the best physical properties.

  • PDF

Study on the Yellow Sandy Dust Phenomena in Korean Peninsula and Chemical Compositions in Fine Particles at Background Sites of Korea. (한반도의 황사 관측현황 및 배경지역 미세먼지의 화학적 조성에 관한 연구)

  • Baek Kwang-Wook;Chung Jin-Do
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.4 s.54
    • /
    • pp.9-18
    • /
    • 2004
  • In this study, the observation data for the yellow sandy dust phenomena from the year 1999 to 2003 at background sites in Korea were collected at Global Atmospheric Observatory at An-Myeon island and its temporal variation were analyzed. The chemical characteristics of the fine particles were also analyzed in order to evaluate sources of the yellow sandy dust particles. The results showed that the monthly average mass concentration of the fine particles was the highest in springtime and the lowest in summertime in general. The magnitude of its variation was also the highest in March in which the occurrence of yellow sandy dust was the most frequent and thus the number of samples was the largest, while the lowest in June through September. The yearly variation of ion components contributions to the total mass concentration of the fine particles was slowly decreasing, showing that $63\%$ in 1999, $59\%$ in 2000 and $56\%$ in 2003. The most prevalent ion components in the fine particles were found to be $NO_3$ and $SO_4^{2-}$, which are known to be source materials of acidic precipitation, and $NH_4^+$, a neutralizing material of the acid precipitation. Relative proportion of metal components in the fine particles was calculated as $14\%$ in average, and their concentrations are in an order of Fe > Al > Na > Ca > Zn > Pb > Cu > Mn > Ni > Cd > Cr > Co > U. The results indicated that main sources of the metals was soil-originated Fe, Al, Ca, and Mg, and the contribution of anthropogenic air Pollution-originated Zn, Pb, Cu, Mn were also high and keep slightly increasing. Statistical analysis showed that the chemical components could be divided into soil-originated group of Mg, Al, Ca, Fe, and Mn and air pollution-originated group of $NO_3$, Zn, Pb, and they are occupying more than $60\%$of all the components in the dusty sand. The results explain that An-Myeon island is more influenced by soil-originated source than ocean-originated one and also the influencing strength of anthropogenic poilution-originated source is less than $50\%$ of that of soil-originated sources. Compared to non-yellow sandy period, the yellow sandy dust period showed that the amounts of soil-originated $Mg^{2+}$ and $Ca^{2+}$ and ocean-originated $Na^+$ and $Cl^-$ were increased to more than double and the metals of Mg, Al, Ca, Fe were also highly increased, while micro metal components such as Pb, Cd, Zn, which have a tendency of concentrating in air, were either decreased or maintained at nearly constant level. In the period of yellow sandy dust, a strong positive correlation was observed between water soluble ions and between metals in terms of its concentration, respectively. Factor analysis showed that the first group being comprised of about $43\%$ of the total inorganic components was affected by soil and they are ions of $Na^+,\;Mg^{2+}\;and\;Ca^{2+}$ and metals of Na, Fe, Mn and Ni. The result also showed that the metals of Mg and Cr were classified as second group and they were also highly affected by soil sources.

The Study on Weldability of Boron Steel and Hot-Stamped Steel by Using Laser Heat Source (I) - Laser Weldability of Al-Si Coated Boron Steel Used for Hot Stamping Process - (레이저 열원을 이용한 보론강 및 핫스탬핑강의 용접특성에 관한 연구 (I) - 핫스탬핑 공정에 사용되는 Al-Si 코팅된 보론강의 레이저 용접특성 -)

  • Kim, Jong Do;Choi, So Young;Lee, Su Jin;Suh, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1367-1372
    • /
    • 2014
  • As the awareness of the environmental crisis has recently increased around the world, numerous studies in the transport industry have been conducted to solve this problem through lightweight car bodies. The hot-stamping process has been presented as solution to achieve a light weight. Hot-stamping is a method that is used to obtain ultra-high strength steel (1,500 MPa or greater) by simultaneously forming and cooling boron steel in a press die after heating it to a temperature of $900^{\circ}C$ or above. This study involved a, fundamental examination of laser parameters to investigate the laser weldability of boron steel. As a result, the following optimum parameters for the shielding gas were found: Q = 20 l/min, ${\alpha}=40^{\circ}$, d = 20mm, and l = 0 mm. The hardness of butt weldment increasesed sharply as a result of martensite formation at the fusion zone.

Conservation Treatment of Sand Stone by Pressurized Impregnation with Acrylic Materials (아크릴계 보존처리제를 이용한 사암의 가압함침 보존처리)

  • Kim, Youn-Cheol;Kim, Sa-Duk;Kim, Hyung-Joong
    • Journal of Conservation Science
    • /
    • v.27 no.4
    • /
    • pp.395-401
    • /
    • 2011
  • After pressurized impregnation treatment, which has been proposed as an effective conservation method for stone cultural property, was executed with methyl metacrylate (MMA), MMA-butyl acrylate (PMB73) mixture and MMA-vinyl trimethoxy silane (PMV5) co-monomer mixture, the physical-chemical properties on the sand stone and the granite impregnated were evaluated. Compared to the case of granite, the impregnation ratios of sand stone showed larger values in the range of 3.2 to 3.7 wt% and these were increased up to 32% when the decompression process was applied to autoclave. The physical properties of sand stone such as anti-moisture property, flexural strength, impact property and ultrasonic velocity were also higher values than those of granite, which can be interpreted by high impregnation ratio resulted in many void within sand stone. The impact failure energy was 1.22 J for PMMA, 1.84 J for PMB73, and 2.8 J for PMV5, respectively. Since the inorganic affinity of treatment agent is more effective than the molecular structure of acrylic agent, PMV5 improved inorganic property indicates the optimum impact property.

Study on VHCF Fatigue Behaviors and UNSM Effects of Hydrogen Attacked STS 316L (수소취화된 스테인리스강 316L의 VHCF(Very High Cycle Fatigue) 피로특성과 UNSM 효과에 관한 연구)

  • Nahm, Seung-Hoon;Baek, Un-Bong;Suh, Chang-Min;Pyun, Young-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1011-1020
    • /
    • 2017
  • This study was conducted to investigate the material properties of stainless steel 316L specimens of untreated and UNSM treated material, hydrogen attacked material(100 bar, $300^{\circ}C$ at 120 h) and UNSM treated hydrogen attacked material at room temperature. Results demonstrated that the hydrogen attacked materials showed a tendency toward a slightly decreased fatigue strength, while the hydrogen embrittlement effect was smaller than the S-N curve of conventional untreated material. As compared to untreated material, the fatigue limit of the UNSM treated material increased by 43.8%, while it was 57.1% higher in the UNSM treated hydrogen attacked material than in untreated hydrogen attacked material. The plastic deformation layer was ${\sim}152{\mu}m$ thick, as confirmed by maps showing the level of local plastic deformation affected by the UNSM treatment in three ways: an image quality map, inverse pole figure map, and kernel average misorientation map captured via electron back scatter diffraction. Owing to hydrogen embrittlement, about 90% of surface cracks were smaller than the average grain size of $35{\mu}m$.

Magmatism and Metamorphism of the Proterozoic in the Northeastern Part of Korea : Petrogenetic and Geochemical Characteristics of the Okbang Amphibolites (한국(韓國) 북동부지역(北東部地域) 원생대(原生代)의 화성활동(火成活動)과 변성작용(變成作用) : 옥방(玉房) 앰피볼라이트의 암석성인(岩石成因)과 지구화학적(地球化學的) 특징(特徵))

  • Chang, Ho-Wan;Lee, Dong-Hwa;Park, Kye-Hun
    • Economic and Environmental Geology
    • /
    • v.26 no.4
    • /
    • pp.489-498
    • /
    • 1993
  • The Okbang amphibolites occurring as sill-shaped bodies within the Precambrian Wonnam Group have been studied in terms of geochemical characteristics for their tectonomagmatic environments. The amphibolites fall in the ortho-amphibolite fields in Ni and Cr versus Cu diagrams. They belong to subalkaline and tholeiitic series in total alkali versus silica and ternary AFM diagrams, respectively. They show the compositional variation corresponding to the differentiation trend of tholeiitic suites. In discrimination diagrams using high-field-strength elements such as Ti, Zr, Nb and Y, the amphibolites show geochemical affinities to both of volcanic-arc tholeiites and normal (depleted) mid-oceanic ridge tholeiites. The REE patterns of the amphibolites are nearly flat and extremely similar to those of back-arc tholeiites. $(La/Yb)_{CN}$ ratios vary from 0.89 to 2.02 with an average value of 1.23. Such low light-REE abundances in the amphibolites suggest that they were derived from the upper mantle source depleted in these elements. In view of geochemical characteristics showing strong enrichments of incompatible elements such as K and Rb, distinctive negative Nb anomalies, depletions of light-REE observed also in normal (depleted) mid-oceanic ridge tholeiites, and unfractionated immobile elements such as Y and Yb, the tholeiitic magmas, from which the parent rocks of the amphibolites were formed, would be generated from a depleted upper mantle source and contaminated by continental crustal materials en route to surface. Tectonomagmatic environment for the amphibolites can be assumed to be continental back-arc basin.

  • PDF

Physico-Chemical Characteristics of Sediment in Sedimentation Tank of Infiltration Trench and Filtration System (비점오염저감시설인 침투도랑과 여과형 시설내 침강지 퇴적의 물리화학적 특성 분석)

  • Lee, Soyoung;Lee, Eun-Ju;Kim, Chulmin;Maniquiz, M.C.;Son, Youngkyu;Khim, Jeehyeong;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.9 no.3
    • /
    • pp.35-42
    • /
    • 2007
  • The paved areas such as parking lots and roads are stormwater intensive landuses since they are impervious and have high pollutant mass emissions from vehicular activity. Vehicle emissions include different pollutants such as heavy metals, oil and grease, particulates from sources such as fuels, brake pad wear and tire wear. Especially, the released heavy metals can be easily absorbed on the surface area of small particulate materials because of its ionic strength. Therefore, by constructing the sedimental tank in structural BMPs as a pre-treatment facility, the particles and heavy metals both can be removed from the runoff at an instant. To understand the physico-chemical characteristics of sediments from sedimentation tank, one-year study at an infiltration trench and filtration system was conducted to quantify the metal mass absorbed on sediments with various particle sizes. The structural BMPs for this study are located in Yongin City, Kyunggido. The research results show that Cu, Zn and Pb are dominant metal compounds in the sediments. Also the metal concentrations are highest at the ranges of $425-850{\mu}m$ particle sizes. The results will provide the basic physico-chemical information of sediments to treat it as solid wastes and to determine the design criteria of sedimentation tank in structural BMPs.

  • PDF

Properties of Non-cement Artificial Stone Utilizing the Waste Porcelain and Waste Glass (폐유리 및 폐자기를 활용한 무시멘트계 인조석재의 특성)

  • Kim, Tae-Hyun;Lee, Seung-Ho;Lee, Sang-Soo;Song, Ha-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.136-142
    • /
    • 2016
  • As the rapid industrialization and modernization progress of the world it is becoming a fast-paced environment pollution. And, dust or environment pollution to solve reckless diggings of natural aggregate cause a serious problem. This study was used a Blast Furnace Slag and Combined Heat and Power Plant of Fly Ash as a cement substitute to reduce $CO_2$ emissions during cement production, this study intend to suggest it's result as basic data 'Properties of Artificial Stone interior or exterior materials type utilizing industrial by-product and waste resource' utilizing Waste Porcelain and Waste Glass. As a result, it was high strength that matrix added the Combined Heat and Power Plant of Fly Ash of addition ratio 40%. Also, pre-experiment was conduct as mixing ratio of waste glass, waste porcelain on the basis of the preceding experiment, proper mixing ratio was judged that proper of waste glass, waste porcelain was mixing ratio 60, 70 (%) of appeared surface aggregate ratio more than 45%.