• Title/Summary/Keyword: high strength materials

Search Result 3,818, Processing Time 0.034 seconds

Fabrication and Mechanical Properties of Carbon Fiber Reinforced Polymer Composites with Functionalized Graphene Nanoplatelets (기능기화 된 그래핀 나노플레이틀릿이 첨가 된 탄소섬유 강화 고분자 복합소재의 제조 및 기계적 특성 연구)

  • Cha, Jaemin;Kim, Jun Hui;Ryu, Ho Jin;Hong, Soon H.
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.316-322
    • /
    • 2017
  • Carbon fiber is a material with excellent mechanical, electrical and thermal properties, which is widely used as a composite material made of a polymer matrix. However, this composite material has a weak point of interlaminar delamination due to weak interfacial bond with polymer matrix compared with high strength and elasticity of carbon fiber. In order to solve this problem, it is essential to use reinforcements. Due to excellent mechanical properties, graphene have been expected to have large improvement in physical properties as a reinforcing material. However, the aggregation of graphene and the weak interfacial bonding have resulted in failure to properly implement reinforcement effect. In order to solve this problems, dispersibility will be improved. In this study, functionalization of graphene nanoplatelet was proceeded with melamine and mixed with epoxy polymer matrix. The carbon fiber reinforced polymer composites were fabricated using the prepared graphene nanoplatelet/epoxy and flexural properties and interlaminar shear strength were measured. As a result, it was confirmed that the dispersibility of graphene nanoplatelet was improved and the mechanical properties of the composite material were increased.

Engineering Properties of Sound Absorbing Foamed Concrete Using Bottom Ash Depending on Mix Factors (배합요인에 따른 바텀애시 미분말을 사용한 흡음형 기포콘크리트의 공학적 특성)

  • Kim, Jin-Man;Kang, Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.63-70
    • /
    • 2009
  • This study is part of an ongoing research project on the development of a sound-absorbing lightweight foamed concrete manufactured by a hydro-thermal reaction between silica and calcium. As the silica source, pulverized bottom ash was used, and as several cementitious powders of ordinary portland cement, alumina cement and calcium hydroxide were used. Manufacture of foamed concrete was accomplished using the pre-foaming method to make a continuous pore system, which is the method of making the foam by using a foaming agent, then making the slurry by mixing the foam, water, and powders. The experiment factors are W/B, foam agent dilution ratio, and foam ratio, and test items are compressive strength, dry density, void ratio, and absorption rate, as evaluated by NRC. The experiment results showed that the sound absorption of lightweight foamed concrete satisfied NRC requirements for the absorbing materials in most of the experiments. It is thus concluded that foam ratio was the most dominant factor, and significantly affected all properties of lightweight foamed concrete in this study. W/B rarely affected total void ratio and continuous void ratio as well as compressive strength, and dry density and foam agent dilution ratio also had little effect onalmost all properties. The analysis of the correlation between NRC, absorption time, continuous void ratio, and absorption time showed that the interrelationship of the continuous void ratio was high.

Ultrasonic Pulses Characteristics in Lightweight Fine Aggregate Concrete under Various Load Histories (하중 이력에 따른 경량 잔골재 콘크리트의 초음파 특성)

  • Yoo, Kyung-Suk;Kim, Jee-Sang;Kim, Ik-Beam
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.209-216
    • /
    • 2014
  • One of the widely used NDT(Non-destructive techniques) is the ultrasonic pulse velocity (USPV) method, which determines the travel time of the ultrasonic pulse through the tested materials and most studies were focused on the results expressed in time domain. However, the signal of ultrasonic pulse in time domain can be transformed into frequency domain, through Fast fourier transform(FFT) to give more useful informations. This paper shows a comparison of changes in the pulse velocity and frequency domain signals of concrete for various load histories using lightweight fine aggregates. The strength prediction equation for normal concrete using USPV cannot be used to estimate lightweight fine aggregate concrete strength. The signals in frequency domain of ultrasonic pulse of lightweight fine aggregate concrete does not show any significant difference comparing with those of normal concrete. The increases in stress levels of concrete change the pulse velocities and maximum frequencies, however the apparent relationship between themselves can not be found in this experiment.

Development of Post-installable Pullout Bolts and a Loading Device for Evaluating Concrete Strength (콘크리트 강도평가를 위한 인발장치와 후매입 인발볼트의 개발)

  • Ko, Hune-Bum;Lee, Ghang;Won, Jong-Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.3
    • /
    • pp.229-237
    • /
    • 2011
  • The pullout test is a nondestructive testing method certified by the American Society for Testing and Materials (ASTM) and British Standards (BS). Research has shown that it is very reliable in terms of evaluating the concrete strength of reinforced concrete members. However, the pullout test is rarely performed on domestic construction sites due to the complex procedures and high costs involved. This study proposes a new pullout test composed of a post installable break-off bolt, an insert nut, and a pullout tester, which satisfy both economical and practical purposes on a construction site. Three different types of special fastening methods, a temporary fixed bolt, a plastic fixed panel, and a fixed bar, have been developed. A pullout tester is proposed that is driven by the circle force introduced into a handle composed of eight gears without a load cell and a hydraulic cylinder. The serviceability and reliability of these instruments were investigated through experiments at construction sites. Furthermore, the sample pullout test with a wall specimen was conducted to estimate the usefulness of the temporary fixed bolt type of fastening methods and pullout devices. Eventually, the developed instruments will be useful on construction sites if minor requirements are met.

The Fractural-Mechanical Properties and Durability of Lightweight Concrete Using the Synthetic Lightweight Aggregate (합성경량골재(SLA)를 사용한 경량콘크리트의 파괴, 역학적 특성 및 내구성)

  • Jo Byung-Wan;Park Seung-Kook;Park Jong-Bin;Daniel C. Jansen
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.19-25
    • /
    • 2005
  • Recycling of waste materials in the construction Industry is a useful method that can cope with an environment restriction of every country. In this study, synthetic lightweight aggregates are manufactured with recycled plastic and fly ash with 12 percent carbon. Nominal maximum-size aggregates of 9.5 mm were produced with fly ash contents of 0, 35, and $80\%$ by the total mass of the aggregate. An expanded clay lightweight aggregate and a normal-weight aggregate were used as comparison. Gradation, density, and absorption capacity are reported for the aggregates. Five batches of concrete were made with the different coarse aggregate types. Mechanical properties of the concrete were determined including density, compressive strength, elastic modulus, splitting tensile strength, fracture toughness, and fracture energy. Salt-scaling resistance, a concrete durability property, was also examined. Compressive and tensile strengths were lower for the synthetic aggregates; however, comparable fracture properties were obtained. Relatively low compressive modulus of elasticity was found for concretes with the synthetic lightweight aggregate, although high ductility was also obtained. As nv ash content of the synthetic lightweight aggregate increased, all properties of the concrete were improved. Excellent salt-scaling resistance was obtained with the synthetic lightweight aggregate containing 80 percent fly ash.

Clinical Results of Treatment of Distal Biceps Rupture (이두박근 원위부 파열의 임상적 치료 결과)

  • Chung, Duke-Whan;Hwang, Jung-Chul
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.8 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • Purpose: To report the clinical results of patients treated for a rupture of the distal tendon of biceps brachii Materials and Methods: Between February 1987 and March 2004, we treated 16 patients with a rupture of the distal tendon of biceps brachii. 9 of 16 patients underwent surgical treatment. All cases were male, median age was 26.3(range, 16-48) years. The mean interval between injury and surgery was 4.7 days (range, 1~36 days). Operative correction was performed anatomically, using the two-incision technique(3 cases) or one-incision technique(6 cases). Clinical outcomes were evaluated one year after operation by assessing the review about the physical examination finding and radiologic findings with surgical findings, range of motion, muscle strength, subjective satisfaction, activity and return to previous occupation. and via telephone interview in cases of conservative treatment. Results: In cases of surgical treatment, 85.8%, 86.3% of flexion-extension and supination-pronation motion than healthy side were measured respectively. 75% of flexion power than healthy side was measured. Eight of nine(89%) were very satisfied. Eightl of nine returned to original job. In cases of conservative treatment, 65% of flexion power than pre-injury state was reported. Four of seven were satisfied, two were dissatisfied, one was very dissatisfied. Three of seven returned to original job. Conclusion: Early anatomic reconstruction can restore more strength and endurance for supination and flexion range and power. Conservative management may be considered for partial injuries, but operative repair must be considered in complete rupture, athletes, patient with high activity.

  • PDF

The Korea Academia-Industrial cooperation Society (유리섬유 복합재료를 이용한 화재 비상통로용 스크린 소재 성능에 관한 연구)

  • Lee, Jung-Yub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.653-659
    • /
    • 2018
  • High-rise buildings and complex facilities are a representative urban system for the masses, and it requires an increasing role of commodity and safety. Smoke and toxic gasses can cause accidents due to fire in these systems. The purpose of this study is to develop a fiber screen material for emergency evacuation passages that can be avoided quickly and safely in cases of disasters. The fiber screen material is applicable to folding devices for emergency evacuation passages. The material is different from general steel material in that it is lightweight with less burden during storage for a long time in a roll form in a folding device. It also has an excellent secondary function in that it is less affected by radiant heat. Three kinds of fiber screen materials were selected that have good flame retardancy and post-processing characteristics. A performance evaluation was performed by a heat shrinkage test, contact heat test, combustibility test, flame retardancy test, tensile strength test, and tear strength test. As a result, the lightweight fabric shows excellent performance through post-processing, and silicone resin coating can secure safety of the pizza by the fiber screen material performance and radiant heat. The optimum post-treatment conditions were evaluated by performing a burning test after coating two kinds of glass fibers and four types of flame-retardant silicone resins with different weight and thickness.

Setting Shrinkage, Thermal Expansion Coefficient and Compressive Strength of Recycled PET Polymer Concrete with Montmorillonite (몬모릴로라이트를 이용한 재활용 PET폴리머 콘크리트의 경화수축, 온도팽창계수, 압축강도)

  • Jo Byong-Wan;Tae Ghi-Ho;Lee Du-Wha
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.205-212
    • /
    • 2004
  • Recently, as concerns over environmental issues are raised more and more trend to use recycled waste for producing construction materials is also raised. Especially, a case of waste resin is considerably destroying the environment due to disposal way that most waste resin produced is disposed of landfill. This study is performed by polymer concrete with recycled PET resin in terms of obtaining safely clean construction resources and protection of environment. High setting shrinkage and sensitivity to heat are main disadvantages of Polymer Concrete (PC) despites of a lot merits. The aim of this study is to investigate basic properties such as setting shrinkage, length change and sensitivity to heat about PET recycled polymer concrete. The other is to check the possibility of use of Montmorillonite as one of a lot of additive without special coupling agent. As results of experiments, various properties of polymer concrete with recycled PET resin are similar with conventional PC except that polymerization time is longer. Montmorillonite was efficiently used to reduce setting shrinkage, length change and coenicient of thermal expansion related to heat with enhanced strength

Engineering Performance and Applicability of Environmental Friendly Porous Concrete for a Marine Ranch Using Steel Industry By-products (철강산업 부산물을 활용한 해양목장 조성용 친환경 다공질 콘크리트의 공학적 성능 및 적용성)

  • Lee, Byung-Jae;Jang, Young-Il;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.115-123
    • /
    • 2013
  • The steel industry, a representative industry that significantly consumes raw materials and energy, produces steel as well as a large amount of by-product steel slag through the production process. The vast habitat foundation of marine life has been destroyed due to recent reckless marine development and environment pollution, resulting in intensification of the decline of marine resources, and a solution to this issue is imperative. In order to propose a method to recycle large amounts of by-product slag into a material that can serve as an alternative to natural aggregate, the engineering properties and applicability for each mixing factor of environment friendly porous concrete as a material for the composition of marine ranches were evaluated in this study. The test results for percentage of voids per mixing ratio revealed that the margin of error for all conditions was within 2.5%. The compressive strength test results showed that the most outstanding environmental friendly porous concrete can be manufactured when mixing 30% slag aggregate and 10% specially treated granular fertilizer for the optimum volume fraction. As concrete for marine applications, the best seawater resistance was obtained with mixing conditions for high compression strength. An assessment of the ability to provide a marine life habitat foundation of environmentally friendly porous concrete showed that a greater percentage of voids facilitated implantation and inhabitation of marine life, and the mixing of specially treated granular fertilizer led to active initial implantation and activation of inhabitation. The evaluation of harmfulness to marine life depending on the mixture of slag aggregate and specially treated granular fertilizer revealed that the stability of fish is secured.

A Study on the Development of an Automated Freeform Fabrication System and Construction Materials (자동화 적층 시공 시스템 및 재료 개발에 관한 연구)

  • Jeon, Kwang Hyun;Park, Min-Beom;Kang, Min-Kyung;Kim, Jung-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1665-1673
    • /
    • 2013
  • Recently, the interest and demand on free formed structure providing aesthetic value as well as functionality has been increasing. Formwork has numerous advantages such as high strength, convenience, accuracy and good quality of surface roughness. Nevertheless, it increases construction cost and period to build complex shapes. For these purpose, deposition construction systems such as Contour Crafting and Concrete Printing have been developed with active collaboration between university and industry by applying the rapid prototyping technology to the construction industry in USA and England. Since there has been no related research in Korea, the possibility of spin-off technology and its fusion cannot be expected. In this paper, design elements including mechanical system and control system related to automatic deposition construction system prototype for constructing a free curved structure without mold are described. As for an appropriate material for the system, fiber reinforced mortar was selected by experiments on compressive strength, fluidity, viscosity and setting time. By performing transfer and extrusion experiments, the possibility of the development of deposition construction system was demonstrated. Based on this research results, it is required to keep the automatic deposition construction system improve and extend it into the new application area in construction industry.