• 제목/요약/키워드: high strength materials

검색결과 3,818건 처리시간 0.04초

Development of Pore Filled Anion Exchange Membrane Using UV Polymerization Method for Anion Exchange Membrane Fuel Cell Application (음이온교환막 연료전지 응용을 위한 UV 중합법을 이용한 세공 충진 음이온교환막 개발)

  • Ga Jin Kwak;Do Hyeong Kim;Sang Yong Nam
    • Membrane Journal
    • /
    • 제33권2호
    • /
    • pp.77-86
    • /
    • 2023
  • In this study, pore-filled ion exchange membranes with low membrane resistance and high hydroxide ion conductivity was developed. To improve alkali durability, a porous substrate made of polytetrafluoroethylene was used, and a copolymer was prepared using monomers 2-(dimethyl amino) ethyl methacrylate (DMAEMA) and vinyl benzyl chloride (VBC) for pores. divinyl benzene (DVB) was used as the cross-linker, and ion exchange membranes were prepared for each cross-linking agent content to study the effect of the cross-linker content on DMAEMA-DVB and VBC-DMAEMA-DVB copolymers. As a result, chemical stability is improved by using a PTFE material substrate, and productivity can be increased by enabling fast photo polymerization at a low temperature by using a low-pressure UV lamp. To confirm the physical and chemical stability of the ion exchange membrane required for an anion exchange membrane fuel cell, tensile strength, and alkali resistance tests were conducted. As a result, as the cross-linking degree increased, the tensile strength increased by approximately 40 MPa, and finally, through the silver conductivity and alkali resistance tests, it was confirmed that the alkaline stability increased as the cross-linking agent increased.

Evaluation and Physicochemical Property for Building Materials from the Japanese Ministry of General Affairs in Joseon Dynasty (일제강점기 조선통감부 건축재료의 물리화학적 특성과 평가)

  • Park, Seok Tae;Lee, Jeongeun;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • 제55권4호
    • /
    • pp.317-338
    • /
    • 2022
  • Physicochemical characteristics and evaluation were studied by subdividing the concretes, bricks and earth pipes on the site of the Japanese Ministry of General Affairs in Joseon Dynasty, known as modern architecture, into three periods. Concretes showed similar specific gravity and absorption ratio, and large amounts of aggregates, quartz, feldspar, calcite and portlandite were detected. Porosity of the 1907 bricks were higher than those of 1910 and 1950 bricks. All earthen pipe is similar, but the earlier one was found to be more dense. Bricks and earthen pipes are dark red to brown in color within many cracks and pores, but the matrix of the earthen pipe is relatively homogeneous. Quartz, feldspar and hematite are detected in bricks, and mullite is confirmed with quartz and feldspar in earthen pipes, so it is interpreted that the materials have a firing temperature about 1,000 to 1,100℃. Concretes showed similar CaO content, but brick and earthen pipe had low SiO2 and high Al2O3 in the 1907 specimen. However, the materials have high genetic homogeneity based on similar geochemical behaviors. Ultrasonic velocity and rebound hardness of the concrete foundation differed due to the residual state, but indicated relatively weak physical properties. Converting the unconfined compressive strength, the 1st extended area had the highest mean values of 45.30 and 46.33 kgf/cm2, and the 2nd extended area showed the lowest mean values (20.05 and 24.76 kgf/cm2). In particular, the low CaO content and absorption ratio, the higher ultrasonic velocity and rebound hardness. It seems that the concrete used in the constructions of the Japanese Ministry of General Affairs in Joseon Dynasty had similar mixing characteristics and relatively constant specifications for each year. It is interpreted that the bricks and earthen pipes were through a similar manufacturing process using almost the same raw materials.

COATED PARTICLE FUEL FOR HIGH TEMPERATURE GAS COOLED REACTORS

  • Verfondern, Karl;Nabielek, Heinz;Kendall, James M.
    • Nuclear Engineering and Technology
    • /
    • 제39권5호
    • /
    • pp.603-616
    • /
    • 2007
  • Roy Huddle, having invented the coated particle in Harwell 1957, stated in the early 1970s that we know now everything about particles and coatings and should be going over to deal with other problems. This was on the occasion of the Dragon fuel performance information meeting London 1973: How wrong a genius be! It took until 1978 that really good particles were made in Germany, then during the Japanese HTTR production in the 1990s and finally the Chinese 2000-2001 campaign for HTR-10. Here, we present a review of history and present status. Today, good fuel is measured by different standards from the seventies: where $9*10^{-4}$ initial free heavy metal fraction was typical for early AVR carbide fuel and $3*10^{-4}$ initial free heavy metal fraction was acceptable for oxide fuel in THTR, we insist on values more than an order of magnitude below this value today. Half a percent of particle failure at the end-of-irradiation, another ancient standard, is not even acceptable today, even for the most severe accidents. While legislation and licensing has not changed, one of the reasons we insist on these improvements is the preference for passive systems rather than active controls of earlier times. After renewed HTGR interest, we are reporting about the start of new or reactivated coated particle work in several parts of the world, considering the aspects of designs/ traditional and new materials, manufacturing technologies/ quality control quality assurance, irradiation and accident performance, modeling and performance predictions, and fuel cycle aspects and spent fuel treatment. In very general terms, the coated particle should be strong, reliable, retentive, and affordable. These properties have to be quantified and will be eventually optimized for a specific application system. Results obtained so far indicate that the same particle can be used for steam cycle applications with $700-750^{\circ}C$ helium coolant gas exit, for gas turbine applications at $850-900^{\circ}C$ and for process heat/hydrogen generation applications with $950^{\circ}C$ outlet temperatures. There is a clear set of standards for modem high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a $500{\mu}m$ diameter $UO_2$ kernel of 10% enrichment is surrounded by a $100{\mu}m$ thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of $35{\mu}m$ thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum $1600^{\circ}C$ afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modem coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond $1600^{\circ}C$ for a short period of time. This work should proceed at both national and international level.

Ablative Mechanism of SiC Coated Carbon/carbon Composites with Ratio of Oxygen to Fuel at Combusion Test (연소시험에서 산소와 연료 비에 따른 탄화규소로 코팅된 탄소/ 탄소 복합재의 삭마 메커니즘)

  • Zhang, Eun-Hee;Kim, Zeong-Baek;Joo, Hyeok-Jong
    • Applied Chemistry for Engineering
    • /
    • 제18권3호
    • /
    • pp.227-233
    • /
    • 2007
  • Carbon/carbon (C/C) composites as unique materials possess exceptional thermal resistance with light weight, high stiffness, and strength even at high temperature. However, one serious obstacle for application of the C/C composites is their poor oxidation resistance in high temperature oxidizing environments. SiC coating has been employed to protect the composites from oxidation. This study explored combustion characteristics of 4-directional (4D) carbon/carbon composites using liquid fuel rocket engine to investigate ablative motion of the materials. C/C composites were made of coal tar pitch as a matrix precursor, and heat-treated at $2300^{\circ}C$. Throughout repeated densification process, the density of the material reached $1.903g/cm^3$. After machining 4D C/C composites, the nozzle surface was coated by a SiC layer by pack-cementation method to improve oxidation resistance. Erosion characteristics of SiC-coated C/C composites were measured as function of the ratio of oxygen to fuel. The morphological change of the composites after combustion test was investigated using SEM and erosion mechanism also was discussed.

Taper phenomenon of UV-laser punching process on zero-shrinkage substrate (무수축 기판 상에 UV 레이저 가공에 의한 Taper 현상)

  • Ahn, Ik-Jun;Yeo, Dong-Hun;Shin, Hyo-Soon;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제25권6호
    • /
    • pp.285-289
    • /
    • 2015
  • With the miniaturization with both high functionality and high integrity of the probe cards, the highly precise laser punching on the zero-shrinkage high strength substrate has attracted more attention recently. Taper occurrence during laser-punching on green sheets appears as a problem in process. The size (diameter) difference between the entrance hole and the exit hole in tapered holes appeared to be inversely proportional to the hole size itself. To suppress taper occurrence, two-stage punching was adopted as the size of second hole was varied from $70{\mu}m$ to $79{\mu}m$ when punching $80{\mu}m$ via holes on the substrate with thickness of $380{\mu}m$. The minimal taper ratio of 11.9 % appeared with second hole size between 70 to $79{\mu}m$ before sintering. Taper ratio reduced to 7 % after zero-shrinkage sintering. The size difference between first hole and second hole appeared minimal when the size of second hole was 95~97 % to that of first hole.

Graphene Oxide/Polyimide Nanocomposites for Gas Barrier Applications (산화그래핀이 함유된 폴리이미드 나노복합막의 기체차단성 평가 및 활용)

  • Yoo, Byung Min;Lee, Min Yong;Park, Ho Bum
    • Membrane Journal
    • /
    • 제27권2호
    • /
    • pp.154-166
    • /
    • 2017
  • Polymeric films for gas barrier applications such as food packaging and electronic devices have attracted great interest due to their cheap, light and easy processability among gas barrier materials. Especially in electronic devices, extremely low gas permeance is necessary for maintaining the device performance. However, current polymeric barrier films still suffer from relatively high gas permeance than other materials. Therefore, there have been strong needs to enhance the gas barrier performance of polymeric barrier films while keep their own advantages. Recently, graphene is highlighted as a 2D-layered material for gas barrier applications. However, owing to the poor workability and difficulty to produce in engineering scale, graphene oxide (GO) is on the rise. GO consists of oxygen-containing functional groups on surface with intrinsic 2D-layered structure and high aspect ratio, and it can be well-dispersed in aqueous polar solvents like water, resulting in scalable mass production. Here, we prepared GO incorporated polyimide (PI) nanocomposites. PI is widely used barrier polymer with high mechanical strength and thermal and chemical stability. We demonstrated that PI/GO nanocomposites could perform as a gas barrier. Furthermore, surfactants (Triton X-100 (TX) and Sodium deoxycholate (SDC)) are introduced to enhance the gas barrier performance by improving the degree of dispersion of GO in PI matrix. As a result, TX enhanced the gas barrier performance of PI/GO nanocomposites which is similar to predicted value. This finding will provide new insight to polymer nanocomposites for gas barrier applications.

The effect of Silano-pen on the shear bond strength of resin to feldspathic porcelain and zirconia (실라노 펜의 적용이 장석계 도재 및 지르코니아와 레진의 전단결합강도에 미치는 영향)

  • Shin, Myoung-Sik;Lee, Jeong-Yol;Kim, Min-Soo;Shin, Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • 제52권1호
    • /
    • pp.1-8
    • /
    • 2014
  • Purpose: The purpose of this study is to evaluate the effect of applying Silano-pen to feldspathic porcelain and zirconia on shear bond strength with composite resin. Materials and methods: Feldspathic porcelain and zirconia specimens were produced into 30 per each 2 mm thick and 12 mm in diameter and their surface was made smooth and even and then embedded in acrylic resin. The specimens were divided into each Group F (Feldspathic porcelain) and Group Z (Zirconia), (1) Hydrofluoric acid etching and silane (F1 & Z1), (2) Silano-pen and silane (F2 & Z2), (3) Hydrofluoric acid etching and Silano-pen, silane (F3 & Z3). After surface conditioning, substrate surfaces of the specimen were examined by SEM. Composite resin cylinders (2 mm high, 3 mm in diameter)were bonded to specimen and shear bond strength between ceramic and composite resin was measured by using universal testing machine. The measured values were statistically analyzed by using two way ANOVA and Tukey's multiple comparison test (${\alpha}=.05$). Results: In the scanning electron micrograph of the treated ceramic surface, Group F2 and F3 appeared the high roughness and Group Z3 appeared the highest density of silica particle. In Feldspathic porcelain, the result of measuring shear bond strength showed that Group F3 was measured to be highest and Group F1 was measured to be lowest but there was no statistical significance among Groups. In zirconia, Group Z3 was measured to be highest and Group Z1 was measured to be lowest and there was statistical significance among Groups (P<.05). Conclusion: In zirconia, applying hydrofluoric acid etching and then Silano-pen and silane is effective for composite resin adhesion.

Gel and Texture Properties of Fish-meat Gel Prepared with Pagrus major in Comparison to Different Grades of Alaska Pollock (도미를 활용하여 제조한 연제품의 겔 및 texture 특성)

  • Gao, Ya;Oh, Jung Hwan;Karadeniz, Fatih;Lee, Seul-Gi;Kim, Hyung Kwang;Kim, Se Jong;Jung, Jun Mo;Cheon, Ji Hyeon;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • 제26권8호
    • /
    • pp.955-962
    • /
    • 2016
  • Fish-meat gel is an intermediate product used in a variety of surimi-based seafood. One of the most-used raw materials of fish-meat gel is Alaska Pollock due to its high-quality meat in terms of gel strength and texture. However, increasing demand for fish-meat gel, along with overexploitation of the wild catch Alaska Pollock, has put the industry in need of low-cost sustainable alternative sources for fish-meat gel. Pagrus major (PM) is a widely aquacultured fish known for having white meat that is low in fat. The current study compares the quality of fish-meat gel prepared from aquacultured PM to that of high and mid-grade Alaska Pollock fish-meat gel. Gels were compared in terms of gel strength, texture, color, and protein pattern. Results indicated that fish-meat gels prepared from PM were superior to Alaska Pollock fish-meat gels with regard to gel strength, hardness, springiness, chewiness, cutting strength, and breaking force. In addition, although not matching in quality, PM exhibited a cohesiveness, whiteness, and expressible moisture content comparable to Alaska Pollock of both grades. Protein pattern analysis also showed that PM and Alaska Pollock fish-meat gels had similar protein profiles before and after gel preparation. Therefore, P. major is suggested as a potential substitute for Alaska Pollock in fish-meat gel production.

Effect of cavity shape, bond quality and volume on dentin bond strength (와동의 형태, 접착층의 성숙도, 및 와동의 부피가 상아질 접착력에 미치는 영향)

  • Lee, Hyo-Jin;Kim, Jong-Soon;Lee, Shin-Jae;Lim, Bum-Soon;Baek, Seung-Ho;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • 제30권6호
    • /
    • pp.450-460
    • /
    • 2005
  • The aim of this study was to evaluate the effect of cavity shape, bond quality of bonding agent and volume of resin composite on shrinkage stress developed at the cavity floor. This was done by measuring the shear bond strength with respect to iris materials (cavity shape , adhesive-coated dentin as a high C-factor and Teflon-coated metal as a low C-factor), bonding agents (bond quality: $Scotchbond^{TM}$ Multi-purpose and Xeno III) and iris hole diameters (volume; 1mm or 3mm in $diameter{\times}1.5mm$ in thickness). Ninety-six molars were randomly divided into 8 groups ($2{\times}2{\times}2$ experimental setup). In order to simulate a Class I cavity, shear bond strength was measured on the flat occlusal dentin surface with irises. The iris hole was filled with Z250 restorative resin composite in a bulk-filling manner. The data was analyzed using three-way ANOVA and the Tukey test. Fracture mode analysis was also done When the cavity had high C-factor, good bond quality and large volume, the bond strength decreased significantly The volume of resin composite restricted within the well-bonded cavity walls is also be suggested to be included in the concept of C-factor, as well as the cavity shape and bond quality. Since the bond quality and volume can exaggerate the effect of cavity shape on the shrinkage stress developed at the resin-dentin bond, resin composites must be filled in a method, which minimizes the volume that can increase the C-factor.

Comparison of shear bond strength according to various surface treatment methods of zirconia and resin cement types (지르코니아의 다양한 표면처리 방법과 레진시멘트 종류에 따른 전단결합강도 비교)

  • Bae, Ji-Hyeon;Bae, Gang-Ho;Park, Taeseok;Huh, Jung-Bo;Choi, Jae-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • 제59권2호
    • /
    • pp.153-163
    • /
    • 2021
  • Purpose: The aim of this study was to evaluate the effects of four surface treatment methods to improve zirconia roughness and three types of resin cement on the shear bond strength (SBS). Materials and methods: A total of 120 zirconia blocks were randomly divided into four surface treatments: non-treatment (Control), airborne-particle abrasion (APA) with 50 ㎛ Al2O3 (APA50), APA with 125 ㎛ Al2O3 (APA125), and ZrO2 slurry (ZA). Three resin cements (Panavia F 2.0, Superbond C&B, and Variolink N) were applied to the surface-treated zirconia specimens. All specimens were subjected to SBS testing using a universal testing machine. The surface of the representative specimens of each group was observed by scanning electron microscope (SEM). SBS data were analyzed with oneway ANOVA, two-way ANOVA test and post-hoc Tukey HSD Test (α=.05). Results: In the surface treatment method, APA125, APA50, ZA, and Control showed high shear bond strength in order, but there was no significant difference between APA125 and APA50 (P>.05). Also, ZA showed significantly higher shear bond strength than Control (P<.05). In the resin cement type, Panavia F 2.0, Superbond C&B, and Variolink N showed significantly higher shear bond strength in order (P<.05). In SEM images, the zirconia surfaces of the APA50 and APA125 showed quite rough and irregular shapes, and the zirconia surface of the ZA was observed small irregular porosity and rough surfaces. Conclusion: APA and ZrO2 slurry were enhanced the surface roughness of zirconia, and Panavia F 2.0 containing MDP showed the highest shear bond strength with zirconia.