• Title/Summary/Keyword: high strength materials

Search Result 3,818, Processing Time 0.035 seconds

Drawing Process Design and Mechanical Properties Control for High Strengthening of CP Titanium (순수 타이타늄 고강도화를 위한 인발공정설계 및 기계적 특성 제어 기술)

  • Choi, Seong Woo;Park, Chan Hee;Lee, Sang Won;Yeom, Jong Taek;Hong, Jae Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.77-81
    • /
    • 2017
  • CP (Commercially Pure) titanium has been widely used in various industries such as in energy plants and bio-materials because of an excellent corrosion resistance and its non-toxicity to the human body. But there are limitations for usage as structural materials due to low strength. The tensile properties of CP titanium could be improved by microstructure refinement such as in a SPD (Severe Plastic Deformation) process. However, high strengthening of CP titanium wire is impossible by SPD processes like ECAP (Equal Channel Angular Pressing), HPT (High-Pressure Torsion), and the ARB (Accumulative Roll Bonding) process. The study purposes are to increase the strength of CP titanium wire by optimization of the cold drawing process and the harmonization with mechanical properties by heat treatments for the next forming process. The optimization process was investigated with regard to the design of drawing dies and the reduction ratio of cross sections. The elongations of high strength CP titanium were controlled by heat treatment.

Development of the Lightweight Multi-layered Board with High Stiffness for Automotive Interior Trims (자동차 내장트림용 고강성 경량 다층보드 개발)

  • Lee, Kyu-Se;Lee, Kyung-Sick
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.41-46
    • /
    • 2007
  • Lightweight multi-layered boards with high stiffness for the automotive interior trims were developed, which were composed of a single material. The boards were constructed in the form of substrate/core/substrate with newly developed materials. The materials which have high tensile strength and elongation were selected for the substrate materials, and those which have high compressive strength and low density were selected for the core materials. 25 types of multi-layered boards were fabricated using the selected substrate and core materials. The compatibility with the skin materials, the formability and the tensile strength and flexural strength of the specimens were evaluated. The results show that three types of multi-layered boards(Kenboard/EPP foam/Kenboard, Twintex/PP honeycomb/Twintex, Curv sheet/EPP foam/Curv sheet) are appropriate for the automotive interior trims. Considering the ease of materials supply and the economical aspect, Kenboard/EPP foam/Kenboard is thought to be the most realistic alternative.

Rapidly Solidified Powder Metallurgy Mg-Zn-RE Alloys with Long Period Order Structure

  • Kawamura, Yoshihito
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1269-1270
    • /
    • 2006
  • Mg-Zn-RE alloys had a novel lond period stacking ordered (LPO) structure. Their rapidly solidified powder metallurgy (RS P/M) alloys exhibited a combination of high strength and god ductility (tensile yield strength above 550 MPa and elongation above 5%). The LPO Mg-Zn-RE RS P/M alloys had high elevated temperature strength (tensile yield strength above 380 MPa at 473 K) and exhibited a high-strain-rate superplasticity at higher temperatures. In Japan, a national project for developing high strength LPO Mg-Zn-RE RS P/M alloys has started at 2003 for 5 years, which is founded by the Ministry of Economy, Trade and Industry (METI) of Japan. In the national project, project targets in materials performances have been achieved. The developed LPO Mg-Zn-RE RS P/M alloys exhibited higher tensile yield strength, fatigue strength and corrosion resistance than high strength aluminum alloys of extra-super-duralumin (7075-T6).

  • PDF

The Optimum Binder Ratio for High-Strength Self-Leveling Material (고강도 Self-Leveling재의 최적 결합재비)

  • 김진만
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.67-76
    • /
    • 2002
  • Self-leveling material(SLM) is one of the floor finishing materials which make flat surface like as water level by itself in a short time. So it is possible to increase construction speed and enhance economical efficiency. In this study, author intended to develop SLM for the industrial warehouse and factory loading heavy weight machinery and vehicles. The demanded properties for this type of SLM are above 20mm of flow value and above 300kgf/cm2 of 28-days compressive strength. To possess demended strength and fluidity, SLM have to be composed of many types of binders and chemical additives. So it is difficult to decide suitable mixing proportion of composition materials. In this study, author investigated the weight percentage effect of main composition materials for high-strength self-leveling material, by experimental design such as tables of orthogonal arrays and simplex design, and by statistical analysis such as analysis of variance and analysis of response surface. Variables of experiments were ordinary portland cement(OPC), alumina cement(AC), anhydrous gypsum(AG), lime stone(LS) and sand, and properties of tests were fluidity of fresh state and strength of hardened state. Results of this study are showed that suitable mix proportions of binders for the high strength self-leveling materials are two groups. One is 78~85.5% OPC, 7.5~9.5% AC, 9~12.5% AG and the other is 72.5~78% OPC, 9~12.5% AC, 13~l5% AG.

  • PDF

Effects of Alloying Elements and the Cooling Condition on the Microstructure, Tensile Properties, and Charpy Impact Properties of High-Strength Bainitic Steels (베이나이트계 고강도강의 합금원소와 냉각조건이 미세조직, 인장성질, 충격성질에 미치는 영향)

  • Sung, Hyo Kyung;Shin, Sang Yong;Hwang, Byoungchul;Lee, Chang Gil;Kim, Nack J.;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.798-806
    • /
    • 2010
  • The effects of alloying elements and the cooling condition on the microstructure, tensile properties, and Charpy impact properties of high-strength bainitic steel plates fabricated by a controlled rolling process were investigated in the present study. Eight kinds of steel plates were fabricated by varying C, Cr, and Nb additions under two different cooling rates, and their microstructures and tensile and Charpy impact properties were evaluated. The microstructures present in the steels increased in the order of granular bainite, acicular ferrite, bainitic ferrite, and martensite as the carbon equivalent or cooling rate increased, which resulted in a decrease in the ductility and Charpy absorbed energy. The steels containing a considerable amount of bainitic ferrite or martensite showed very high strengths, together with good ductility and Charpy absorbed energy. In order to achieve the best combination of strength, ductility, and Charpy absorbed energy, granular bainite and acicular ferrite were properly included in the high-strength bainitic steels by controlling the carbon equivalent and cooling rate, while about 50 vol.% of bainitic ferrite or martensite was maintained to maintain the high strength.

Physical Properties Analysis of the High-Tech Fibers for Fishing Gear Materials 1. Tensile Strength of the High-tech Fibers (어구재료용 신소재섬유의 물성분석 - 1 . 신소재섬유의 인장강도 -)

  • Kim, Tae-Ho;Ko, Kwan-Soh
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.2
    • /
    • pp.117-123
    • /
    • 1993
  • In order to analysis the tensile properties of the high-tech fibers for fishing gear materials. tensile strength was tested on raw materials, single yarns and netting twines(plied yarns)made of nylon, kevlar 29 and techmilon respectively. The results obtained are as follows: 1. The tensile stress and tenacity of unknotted single yarns in dry and wet conditions were 3 to 3.5 times greater in the high-tech fibers than in nylon. But the elongation of the high-tech fibers was about 15% of that in nylon. 2. The tensile strength of knotted single yarns in dry and wet conditions was arranged in order of as follows : techmilon. kelver 29, and nylon. The ratio of knot strength to tensile strength, knot efficiency, was the highest in nylon. 3. The tensile strength of unknotted netting twines in dry and wet conditions was 2.3 to 2.5 times greater in the high-tech fibers than in nylon. 4. The tensile strength of knotted netting twines in dry and wet conditions was arranged in order of as follows : techmilon, kevlar 29, nylon. The knot efficiency was the highest in nylon.

  • PDF

The influencing factors for the strength enhancement of composite materials made up of fine high-calcium fly ash

  • Olga M. Sharonova;Leonide A. Solovyov;Alexander G., Anshits
    • Advances in concrete construction
    • /
    • v.16 no.3
    • /
    • pp.169-176
    • /
    • 2023
  • The aim of the study was to establish the influence of particle size, chemical and phase composition of fine microspherical high-calcium fly ash (HCFA), as well as superplasticizer content on the strength of cementless composite materials based on 100% HCFA and mixtures of HCFA with Portland cement (PC). For the initial HCFA fractions, the particle size distribution, chemical and quantitative phase composition were determined. The compressive strength of cured composite materials obtained at W/B 0.4 and 0.25 was determined at a curing time of 3-300 days. For cementless materials, it was found that a change in the particle size d90 from 30 ㎛ (fraction 3) to 10 ㎛ (fraction 4) leads to an increase in compressive strength by more than 2 times. Compressive strength increases by at least another 2.2 times with the addition of Melflux 5581F superplasticizer (0.12%) and at W/B 0.25. The HCFA-PC blends were investigated in the range of 60-90% HCFA and the maximum compressive strength was found at 80% HCFA. On the basis of 80% HCFA-20% PC blend, the samples of ultra-high strength (108 and 150 MPa at 28 and 100 days of hardening) were obtained with the addition of 0.3% Melflux 5581F and 5% silica fume. The quantitative phase composition was determined for composite materials with a curing age of 28 days. It has been established that in a sample with ultra-high strength, a more complete transformation of the initial phases of both HCFA and PC occurs as compared to their transformation separately.

A Study on the Finite Element Analysis of springback characteristics according to stamping process conditions of UHSS with UTS of 1.2GPa (1.2GPa급 초고강도강판의 공정조건에 따른 스프링백 특성에 관한 유한요소해석 연구)

  • Jang, Hyun-Min;Choi, Kye-Kwang
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.34-39
    • /
    • 2018
  • The biggest topics in the automobile industry are light weightening and fuel efficiency improvement. There's a lot of research going on. It is focused on light weight materials. Light weight material is seen as the best way to reduce fuel consumption and to solve the problem of environmental pollution and resource depletion. For the light weight materials, new materials such as aluminum, magnesium, and carbon-hardening materials can be found. Research on the joining techniques of dual materials, improvement of material properties by improving the method of manufacture of existing materials, and studies on ultra-high strength steel sheets are expected to take up the most weight in lightweight materials. As the strength of the ultra-high strength steel sheets increases during forming, it is difficult to obtain dimensional precision due to the increase in elastic restoring force compared to mild or high strength steel sheets. Spring back is known to be affected by a number of factors due to poor plastic molding, and can be divided into the effects of the material spraying and the process. The study on the plasticitic variables were studied as plasticitic factors that can be controlled by a part company. Tensile testing of ultra-high strength materials was conducted to derive properties for plasticitic analysis and to analyze spring back with two factors controlling the height of the bead and blank holding force by adding tensile force and controlling the flow rate.

High-strength Soft Magnetic Composite with Self-lubricating Resin

  • Miyahara, Masahisa;Tanaka, Yoshihiro;Igarashi, Kazunori;Morimoto, Koichiro
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1173-1174
    • /
    • 2006
  • Improvement of the strength is one of the most important subjects on soft magnetic composite (SMC) to increase the applica ble items. In this study, lubricants for inner lubricating SMC, which can be produced in lower cost than die wall-lubricatin g SMC, varied to investigate their effect on the strength. The newly developed SMC with self-lubricating resin shows high st rength equivalent to that of SMC obtained by die wall lubrication.

  • PDF

S-2 Glass Fiber (Super Tensile Strength 유리섬유 방사연구)

  • Sung, Wan;Lee, Jae-Rak;Chang, Haeng-Jong;Kim, Yeong-Geun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.212-215
    • /
    • 2000
  • For the production of high strength constructional glass reinforced plastics and various composite materials continuous glass fibers of high strength and increased modulus of elasticity are used. As is known, the glasses with highest strength were obtained in magnesia alumosilicate and magnesia lime-alumosilicate systems when introducing oxides of titanium and zirconium, boric anhydride, etc. in some cases. The experimental investigations have shown that some glass compositions are characterized by the ratio viscosity/crystallization which is favourable for glass fiber drawing process that permits the attainment of high strength level at the conditions of high temperature glass melting and formation.

  • PDF