• Title/Summary/Keyword: high strength materials

Search Result 3,818, Processing Time 0.031 seconds

A Study on the Optimization of the Mix Proportions of High Strength Concrete Fire-Resistant Reinforcement Using Orthogonal Array Table (직교배열표를 이용한 고강도콘크리트 내화성능 보강재의 배합 최적화 연구)

  • Lee, Mun-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.179-186
    • /
    • 2009
  • The peculiarity pointed out for high strength concrete is the occurrence of spalling during a fire. Recently, there are many efforts such as development of all types of spalling reducing materials and other innovative materials in various fields. Need is now to examine the adequate mixing proportions of these materials. This study intended to derive experimentally and statistically mix proportions that can represent the basic quality requirements as well as the optimal effects on the fire-resistance for 4 types of functional materials that are metakaolin, waste tire chip, polypropylene fiber and steel fiber. Here, the tests were planned through an optimal test method using an orthogonal array table with 4 parameters and 3 levels. The statistical analysis adopted the response surface analysis method. Results verified mutual complementary contribution between the materials when using a combination of the functional materials selected as parameters for the strengthening of the fire-resistance of 80 MPa-class high strength concrete. Besides, the optimal conditions of the fire-resistance strengthening materials derived through response surface analysis were a volumetric replacement of silica fume by 80% of metakaolin, a volumetric replacement of fine aggregates by 3% of tire waste chip, and an addition of 0.2% of the whole volume by polypropylene fiber without mixing of steel fiber. In such cases, the basic characteristics as well as the fire-resistant characteristics of high strength concrete were also satisfied.

Joint characteristics of advanced high strength steel and A15052 alloy in the clinching process (초고장력강과 알루미늄 5052 소재의 클린칭 접합특성)

  • Lee, C.J.;Kim, J.Y.;Lee, S.K.;Ko, D.C.;Schafer, H.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.401-404
    • /
    • 2009
  • The purpose of this study is investigating the joint characteristics of advanced high strength steel DP780 and Al5052 alloy sheet in the clinching process. It is difficult to join the advanced high strength steel with light-weight materials like aluminum alloy, because of low formability of DP780. The defects of clinching joint such as necking of the upper sheet, cracks of the lower sheet and no interlocking were occurred by different ductility between advanced high strength steel and aluminum alloy. The clinching conditions should be optimized to interlock without any defects. In this study, the effect of process parameters of clinching process on joinability of advanced high strength steel with Al5052 alloy was investigated by using FE-analysis. From the result of FE-analysis, the clearance between clinching punch and die, die depth and the shape of die cavity mainly affected the joinability of advanced high strength steel with Al5052 alloy.

  • PDF

Effect of Microstructural Factors on the Strength and Deformability of Ferrite-Pearlite Steels with Different Mn and V Contents (Mn 및 V 함량이 다른 페라이트-펄라이트 조직강의 강도와 변형능에 미치는 미세조직 인자의 영향)

  • Hong, Tae-Woon;Lee, Sang-In;Shim, Jae-Hyeok;Lee, Junho;Lee, Myoung-Gyu;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.28 no.10
    • /
    • pp.570-577
    • /
    • 2018
  • This study examines the effect of microstructural factors on the strength and deformability of ferrite-pearlite steels. Six kinds of ferrite-pearlite steel specimens are fabricated with the addition of different amounst of Mn and V and with varying the isothermal transformation temperature. The Mn steel specimen with a highest Mn content has the highest pearlite volume fraction because Mn addition inhibits the formation of ferrite. The V steel specimen with a highest V content has the finest ferrite grain size and lowest pearlite volume fraction because a large amount of ferrite forms in fine austenite grain boundaries that are generated by the pinning effect of many VC precipitates. On the other hand, the room-temperature tensile test results show that the V steel specimen has a longer yield point elongation than other specimens due to the highest ferrite volume fraction. The V specimen has the highest yield strength because of a larger amount of VC precipitates and grain refinement strengthening, while the Mn specimen has the highest tensile strength because the highest pearlite volume fraction largely enhances work hardening. Furthermore, the tensile strength increases with a higher transformation temperature because increasing the precipitate fraction with a higher transformation temperature improves work hardening. The results reveal that an increasing transformation temperature decreases the yield ratio. Meanwhile, the yield ratio decreases with an increasing ferrite grain size because ferrite grain size refinement largely increases the yield strength. However, the uniform elongation shows no significant changes of the microstructural factors.

Gradient Microstructure and Mechanical Properties of Fe-6%Mn Alloy by Different Sized Powder Stacking (다른 크기의 분말 적층을 통해 얻은 Fe-6%Mn합금의 경사 미세조직과 기계적 특성)

  • Seo, Namhyuk;Lee, Junho;Shin, Woocheol;Jeon, Junhyub;Park, Jungbin;Son, Seung Bae;Jung, Jae-Gil;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.29 no.5
    • /
    • pp.382-389
    • /
    • 2022
  • A typical trade-off relationship exists between strength and elongation in face-centered cubic metals. Studies have recently been conducted to enhance strength without ductility reduction through surface-treatment-based ultrasonic nanocrystalline surface modification (UNSM), which creates a gradient microstructure in which grains become smaller from the inside to the surface. The transformation-induced plasticity effect in Fe-Mn alloys results in excellent strength and ductility due to their high work-hardening rate. This rate is achieved through strain-induced martensitic transformation when an alloy is plastically deformed. In this study, Fe-6%Mn powders with different sizes were prepared by high-energy ball milling and sintered through spark plasma sintering to produce Fe-6%Mn samples. A gradient microstructure was obtained by stacking the different-sized powders to achieve similar effects as those derived from UNSM. A compressive test was performed to investigate the mechanical properties, including the yielding behavior. The deformed microstructure was observed through electron backscatter diffraction to determine the effects of gradient plastic deformation.

Hydrogen Embrittlement Behavior of High Mn TRIP/TWIP Steels (고 Mn계 TRIP/TWIP 강의 수소취성 거동)

  • Jung, Jong-Ku;Lee, Oh-Yeon;Park, Young-Koo;Kim, Dong-Eun;Jin, Kwang-Geun
    • Korean Journal of Materials Research
    • /
    • v.18 no.7
    • /
    • pp.394-399
    • /
    • 2008
  • The hydrogen embrittlement susceptibility of high strength TRIP/TWIP steels with the tensile strength of 600Mpa to 900Mpa grade was investigated using cathodically hydrogen charged specimens. TWIP steels with full austenite structure show a lower hydrogen content than do TRIP steels. The uniform distribution of strong traps throughout the matrix in the form of austenite is considered beneficial to reduce the hydrogen embrittlement susceptibility of TWIP steels. Moreover, an austenite structure with very fine deformation twins formed during straining could also improve the ductility and reduce notch sensitivity. In Ubend and deep drawing cup tests, TWIP steels show a good resistance to hydrogen embrittlement compared with TRIP steels.

Influence of Various Additional Elements in Al Based Filler Alloys for Automotive and Brazing Industry

  • Sharma, Ashutosh;Shin, Y.S.;Jung, Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.1-8
    • /
    • 2015
  • Aluminium and its alloys are widely used in brazing various components in automotive industries due to their properties like lightweight, excellent ductility, malleability and formability, high oxidation and corrosion resistance, and high electrical and thermal conductivity. However, high machinability and strength of aluminium alloys are a serious concern during casting operations. The generation of porosity caused by dissolved gases and modifiers affects seriously the strength and quality of cast product. Brazing of Al and its alloys requires careful monitoring of temperature since theses alloys are brazed at around the melting temperature in most of the aluminium alloys. Therefore, the development of low temperature brazing filler alloys as well as superior strength Al alloys for various engineering applications is always in demand. In various heat exchangers and automotive applications, poor strength of Al alloys is due to the inherent porosities and casting defects. The unstable mechanical properties is therefore needed to be controlled by adding various additive elements in the aluminium and its alloys, by a change in the heat treatment procedure or by modifying the microstructure. In this regard, this article reports the effect of various elements added in aluminium alloys to improve microstructure, brazeability, machinability, castability as well as to stabilize the mechanical properties.

Experimental investigation of local damage in high strength concrete columns using a shaking table

  • Bairrao, Rogerio;Kacianauskas, Rimantas;Kliukas, Romualdas
    • Structural Engineering and Mechanics
    • /
    • v.19 no.5
    • /
    • pp.581-602
    • /
    • 2005
  • In this paper the accumulation of local damage during the cyclic loading in reinforced high-strength concrete columns is experimentally investigated. Two identical column specimens with annular cross-section and spiral reinforcement were designed and two tests, up to failure, under the action of a constant vertical concentrated force and a time-dependent concentrated horizontal force, were carried out at the LNEC shaking tables facility. Sine type signals, controlled in amplitude, frequency and time duration were used for these experiments. The concept of local damage based on local stiffness degradation is considered in detail and illustrated by experimental results. The specimens were designed and reinforced in such a way that the accumulation of damage was predicted by dominating deformations (cracking and crushing of the concrete) while the increasing of the loading values was a dominating factor of damage. It was observed that the local damage of HSC columns has exposed their anisotropic local behaviour. The damage accumulation was slightly different from the expected in accordance with the continuum damage concept, and a partial random character was observed.

Experimental and analytical study on improvement of flexural strength of polymer concrete filled GFRP box hybrid members

  • Ali Saribiyik;Ozlem Ozturk;Ferhat Aydin;Yasin Onuralp Ozkilic;Emrah Madenci
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.475-487
    • /
    • 2024
  • The usage of fiber-reinforced polymer materials increases in the construction sector due to their advantages in terms of high mechanical strength, lightness, corrosion resistance, low density and high strength/density ratio, low maintenance and painting needs, and high workability. In this study, it is aimed to improve mechanical properties of GFRP box profiles, produced by pultrusion method, by filling the polymer concrete into them. Within the scope of study, hybrid use of polymer concrete produced with GFRP box profiles was investigated. Hybrid pressure and bending specimens were produced by filling polymer concrete (polyester resin manufactured with natural sand and stone chips) into GFRP box profiles having different cross-sections and dimensions. Behavior of the produced hybrid members was investigated under bending and compression tests. Hollow GFRPxx profiles, polymer-filled hybrid members, and nominative polymeric concrete specimens were tested as well. The behavior of the specimens under pressure and bending tests, and their load bearing capacities, deformations and changes in toughness were observed. According to the test results; It was deduced that hybrid design has many advantages over its component materials as well as superior physical and mechanical properties.

Influences of Casting Conditions and Constituent Materials on the Production of Duo-castings (이중복합 주조체의 제조에 미치는 구성 재질과 주조 조건의 영향)

  • Jung, Jae-Young
    • Journal of Korea Foundry Society
    • /
    • v.38 no.1
    • /
    • pp.16-26
    • /
    • 2018
  • In this study, the effects of the pouring temperature, preheating temperature, surface condition and fraction of the wear resistant part on the production of duo-castings were investigated using a high Cr white cast iron with excellent abrasion resistance and a low Cr alloy steel with good toughness. The constituent materials of the duo-castings were designed to have high hardness, fracture toughness and abrasive wear resistance for the replacement of high Mn alloy steels with low abrasive wear resistance. In particular, the amount of abrasive wear of 17% Cr white cast iron was about 1/20 of that of high Mn alloy steel. There was an intermediate area of about 3mm due to local melting at the bonding interface of the duo-castings. These intermediate regions were different from those of the constituent materials in chemical composition and microstructure. This region led to fracture within the wear resistant part rather than at the bonding interface in the bending strength test. The bending fracture strengths were 516-824 MPa, which were equivalent to the bending proof strength of high Mn steel. The effects of various casting conditions on the duo-cast behavior were studied by simple pouring of low Cr alloy steel melt, but the results proved practically impossible to manufacture duo-castings with a sound bonding interface. However, the external heating method was suitable for the production of duo-castings with a sound bonding interface.

Effect of C, Mn and Al Additions on Tensile and Charpy Impact Properties of Austenitic High-manganese Steels for Cryogenic Applications (극저온용 오스테나이트계 고망간강의 인장 및 충격 특성에 미치는 C, Mn, Al 첨가의 영향)

  • Lee, Seung-Wan;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.29 no.3
    • /
    • pp.189-195
    • /
    • 2019
  • The effect of C, Mn, and Al additions on the tensile and Charpy impact properties of austenitic high-manganese steels for cryogenic applications is investigated in terms of the deformation mechanism dependent on stacking fault energy and austenite stability. The addition of the alloying elements usually increases the stacking fault energy, which is calculated using a modified thermodynamic model. Although the yield strength of austenitic high-manganese steels is increased by the addition of the alloying elements, the tensile strength is significantly affected by the deformation mechanism associated with stacking fault energy because of grain size refinement caused by deformation twinning and mobile dislocations generated during deformation-induced martensite transformation. None of the austenitic high-manganese steels exhibit clear ductile-brittle transition behavior, but their absorbed energy gradually decreases with lowering test temperature, regardless of the alloying elements. However, the combined addition of Mn and Al to the austenitic high-manganese steels suppresses the decrease in absorbed energy with a decreasing temperature by enhancing austenite stability.