• Title/Summary/Keyword: high strength materials

Search Result 3,818, Processing Time 0.038 seconds

Analytical model for flexural and shear strength of normal and high-strength concrete beams

  • Campione, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.199-207
    • /
    • 2021
  • In the present paper, an analytical model is proposed to determine the flexural and shear strength of normal and high-strength reinforced concrete beams with longitudinal bars, in the presence of transverse stirrups. The model is based on evaluation of the resistance contribution due to beam and arch actions including interaction with stirrups. For the resistance contribution of the main bars in tension the residual bond adherence of steel bars, including the effect of stirrups and the crack spacing of R.C. beams, is considered. The compressive strength of the compressed arch is also verified by taking into account the biaxial state of stresses. The model was verified on the basis of experimental data available in the literature and it is able to include the following variables in the resistance provision: - geometrical percentage of steel bars; - depth-to-shear span ratio; - resistance of materials; - crack spacing; - tensile stress in main bars; - residual bond resistance including the presence of stirrups;- size effects. Finally, some of the more recent analytical expressions able to predict shear and flexural resistance of concrete beams are mentioned and a comparison is made with experimental data.

An Experimental Study on Manufacturing Ultra-Hihg Strength Concrete of 2300kgf/$\textrm{cm}^2$ Compressive Strength -Part 1, The Experimental Program and Preliminary Experiment- (압축강도 2300kgf/$\textrm{cm}^2$의 초고강도콘크리트의 개발에 관한 실험적 연구 -제 1보, 실험 계획 및 예비실험을 중심으로-)

  • 최희용;김규용;김진만;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.246-251
    • /
    • 1995
  • To reduce the size of structural members high strength concrete has recently been utilized for structrue such as ultra-high-rise buildings and prestressed concrete bridges in North America. and its compressive strength has gone up to 1300kgf/$\textrm{cm}^2$. In Japan, research on high-strength concrete has been undertaken on a large scale by the national enterprise so-called New RC Project, and this project purposed to develop the design compressive sstength of 1200kgf/$\textrm{cm}^2$. Considering these circumstance. the aim of this aim of this experimental study is to develop ultra-high-strength concrete with compressive stength over 2300kgf/$\textrm{cm}^2$ with domestic current materials. There are so many factors which influence on manufacturing of ultrahigh-strength concrete. The experimental factors selected in this study are mixing methods, curing methods, water-binder ratio, maximum size of coarse aggregate, and the replacement proportion of cement by silica fume. The results of this expermental study show that it is possible to develop the ultra-high-strength concrete with compressive strength over 2300kgf/$\textrm{cm}^2$.

  • PDF

Effects of Replacement Ratio and Fineness of GGBFS on the Hydration and Pozzolanic Reaction of High-Strength High-Volume GGBFS Blended Cement Pastes (고강도 고로슬래그 혼합 시멘트 페이스트의 수화 및 포졸란 반응에 미치는 고로슬래그 미분말의 치환률과 분말도의 영향)

  • Jeong, Ji-Yong;Jang, Seung-Yup;Choi, Young-Cheol;Jung, Sang-Hwa;Kim, Sung-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.115-125
    • /
    • 2015
  • This study investigated the fluidity, heat of hydration, setting time, strength development, and characteristics of hydration and pozzolanic reactions of high-strength high-volume ground granulated blast-furnace slag(GGBFS) blended cement pasts with the water-to-binder ratio of 20% by experiments, and analyzed the effects of the replacement ratio and fineness of GGBFS on the hydration and pozzolanic reaction. The results show that, in the high-strength mixtures with low water-to-binder ratio, the initial hydration is accelerated due to the "dilution effect" which means that the free water to react with cement increases by the replacement of cement by GGBFS, and thus, strengths at from 3 to 28 days were higher than those of plain mixtures with ordinary Portland cement only. Whereas it was found that the long term strength development is limited because the hydration reaction rates rapidly decreases with ages and the degree of pozzolanic reaction is lowered due to insufficient supply of calcium hydroxide according to large replacement of cement by GGBFS. Also, the GGBFS with higher fineness absorbs more free water, and thus it decreases the fluidity, the degree of hydration, and strength. These results are different with those of normal strength concrete, and therefore, should be verified for concrete mixtures. Also, to develop the high-strength concrete with high-volume of GGBFS, the future research to enhance the long-term strength development is needed.

A Study on the Relationship between Tensile and Low Cycle Fatigue Properties of High Strength Material (고강도 소재의 인장과 저주기피로 물성치의 연관성에 관한 연구)

  • Park, M.K.;Suh, C.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.2
    • /
    • pp.110-115
    • /
    • 2014
  • Low cycle fatigue characteristics are very important in the development of automobile suspension parts. Fatigue properties using the strain life approach are usually obtained from low cycle fatigue tests. However, low cycle fatigue testing requires a lot of time and cost. In the current study, an attempt to estimate low cycle fatigue properties of high strength steel sheet from tensile test and tensile simulations is performed. In addition, low cycle fatigue testing was conducted to compare the fatigue properties obtained from tensile testing and simulations. In conclusion, the results effectively predict the low cycle fatigue properties. However, some deviations still exist.

A study on the Spectra reinforcement composite of its ballistic performance (방탄용 Spectra 섬유 강화 복합재료에 관한 연구)

  • 강은영;윤영기;윤희석
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.83-86
    • /
    • 2001
  • This paper presents an investigation of the contribution of fibers in energy absorption during impact and the effect of resin types on properties of the high strength polyethylene (Spectra-900 PE) composite. In high strength polyethylene fiber, main impact energy absorbing mechanism was tensile breakage and deformation of fiber. Two types of resin were examined : Unsaturated polyester (UP) and Epoxy. Tensile and 3-point bending test have been performed to investigate the changes of mechanical properties. In tensile and flexural testes, the Spectra Composite prepregged with UP showed higher properties than Spectra Composite prepregged with epoxy.

  • PDF

A Study on the Formability of Engine Cradle applied to Hydroforming according to Material Properties (하이드로포밍을 적용한 Engine Cradle의 소재 특성에 따른 성형성 고찰)

  • 박재헌;최이천;김경기
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.249-253
    • /
    • 2003
  • In recent years, developments of light weight vehicle are one of the most important issues in automotive makers. New materials and new processes have been studied on the point of weight saving of chassis worldwide. Associated with materials, applications of high strength steel, aluminium, magnesium are being developed. On the point of new processes, tailored welded blank and hydroforming have been applied. In this paper, focusing to both material and process, we have applied hydroforming process to the engine cradle. In addition to that, three kinds of high strength steel have been applied to the development of light weight material for hydroforming. All the studies have been carried by FEM.

  • PDF

Design of self-piercing rivet to joint in advanced high strength steel and aluminium alloy sheets (초고장력강과 알루미늄 합금의 접합을 위한 SPR 설계)

  • Kim, Dongbum;Qiu, Yuangen;Cho, Hae-Yong
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.75-80
    • /
    • 2015
  • Self-piercing riveting is an joining method of advanced high strength steels (AHSS) and other dissimilar materials. It has attracted considerable interest from the automotive industry. The SPR has become an interesting alternative joining technique for difficult to weld materials such as steels and aluminium alloys. In this paper, self-piercing rivet and anvil for SPR were designed for the joining conditions with AHSS and aluminium alloy. Various conditions of SPR were simulated for the design of rivets and anvils. The simulated results were in good agreement with experimental ones. As a result, over HV500 rivet is desirable to joint SPFC780 AHSS and aluminum alloy.

An innovative solution for strengthening of old R/C structures and for improving the FRP strengthening method

  • Tsonos, Alexander G.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.323-338
    • /
    • 2014
  • In this study a new innovative method of earthquake-resistant strengthening of reinforced concrete structures is presented for the first time. Strengthening according to this new method consists of the construction of steel fiber ultra-high-strength concrete jackets without conventional reinforcement which is usually applied in the construction of conventional reinforced concrete jackets. An innovative solution is proposed also for the first time that ensures a satisfactory seismic performance of existing reinforced concrete structures, strengthened by using composite materials. The weak point of the use of such materials in repairing and strengthening of old R/C structures is the area of beam-column joints. According to the proposed solution, the joints can be strengthened with a steel fiber ultra-high-strength concrete jacket, while strengthening of columns can be achieved by using CFRPs. The experimental results showed that the performance of the subassemblage strengthened with the proposed mixed solution was much better than that of the subassemblage retrofitted completely with CFRPs.

Microstructure and Mechanical Properties of Rapidly Solidified Powder Metallurgy Al-Fe-V-Si-X Alloys

  • Genkawa, Takuya;Yamasaki, Michiaki;Kawamura, Yoshihito
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1041-1042
    • /
    • 2006
  • High heat-resistant Al-Fe-V-Si and Al-Fe-V-Si-X rapidly solidified powder metallurgy (RS P/M) alloys have been developed under well-controlled high purity argon gas atmosphere. The $Al_{90.49}Fe_{6.45}V_{0.68}Si_{2.38}$ (at. %) RS P/M alloy exhibited high elevated-temperature strength exceeding 300 MPa and good ductility with elongation of 6 % at 573 K. Reduction of $H_2O$ partical pressure in P/M processing atmosphere led to improvement in mechanical properties of the powder-consolidated alloys under elevated-temperature service conditions. Ti addition to the Al-Fe-V-Si conduced to enhancement of the strength at room temperature. The tensile yeild strength and ultimate strenght were 545 MPa and 722 MPa, respectively.

  • PDF

Shear behavior of a demountable bolted connector in steel-UHPC lightweight composite structures

  • Gu, Jin-Ben;Wang, Jun-Yan
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.551-563
    • /
    • 2022
  • Bolted connector could be an alternative to replace the conventional welded headed stud in steel-ultra high performance concrete (UHPC) lightweight composite structures. In this paper, a novel demountable bolted shear connector, consisting of a high-strength bolt (HSB) and a specially-designed nut which is pre-embedded in a thin UHPC slab, is proposed, which may result in the quick installation and disassembly, due to the mountable, demountable and reusable features. In order to study the shear behavior of the new type of bolted shear connector, static push-out tests were conducted on five groups of the novel demountable bolted shear connector specimens and one group of conventional welded headed stud specimen for comparison. The effect of the bolt shank diameter and aspect ratio of bolt on failure mode, shear stiffness, peak slip at the steel-UHPC interface, shear strength and ductility of novel bolted connectors is investigated. Additionally, design formula for the shear strength is proposed to check the suitability for assessment of the novel demountable bolted shear connectors.