• Title/Summary/Keyword: high strength materials

Search Result 3,818, Processing Time 0.034 seconds

The Effects of Sewing Thread Materials and Sewing Methods on Mechanical Properties of Knitwear (봉제원사와 봉제방법에 따른 니트웨어의 역학적 특성)

  • Kang, Sook-Nyeo;Kwen, Jin
    • Journal of the Korean Society of Costume
    • /
    • v.57 no.2 s.111
    • /
    • pp.1-10
    • /
    • 2007
  • This study aims at the improvement of sewing function through understandings of dynamic property about the sewing methods and the thread material selection in knitwear. The tensile strength and shear of KES-FB and the Instron were measured for the analysis of the mechanical properties. The knit cloth was structured In the plain stitch, $1\times1$ rib stitch and $2\times1$ rib stitch with the combination of wool and cotton. With regard to the sewing method, intralooping and interlacing were applied. For thread materials, polyester, cotton, wool and silk were used. Since silk has the lowest extension and similar values regardless of its construction in intralooping, it is available knit apparel with uniform elastic recoverv. It also has small shearing resistance. It can be used in apparel which needs big mobility, but it causes rutting problem. Therefore, it is suitable to use intralooping. When the same sewing yarn and textile are use, it can lower shearing resistance and extension in intralooping, Since wool needs a lot of extension energy and it can be cut, intralooping is more suitable than interlacing in sewing of wool. In interlacing using polyester, extension and shearing resistance are high. Therefore, it is suitable for knit sewing with high massing. Silk is not suitable for interlacing since it can be rut. Even though knit materials are different, the RT values of polyester and cotton are similar in same construction. Therefore, they can be substituted each other considering resilience after sewing.

Corrosion analysis for application of CCO thin films to industrial equipment materials (산업 설비 재료에 CCO박막의 적용을 위한 부식성 분석)

  • Baek, Min Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.98-103
    • /
    • 2018
  • Many coating technologies have been developed so far to improve the corrosion resistance, strength, abrasion resistance and other surface properties of materials and equipment. Among them, the formation of CCO (CaCoO, then CCO) thin films has been studied and used in the electronic material field. One of the characteristics of CCO thin films is that it is resistant to high temperature heat. Particularly, the method of forming the CCO thin film is relatively simple, and it was judged that it could be introduced into the existing equipment. Therefore, in this study, an experiment and analysis were carried out to determine whether the coating of CCO thin films can be applied to hot dip galvanizing facilities. A CCO thin film was formed on the surface of STS304 base material and oxidized in a Zn fume atmosphere in a $650^{\circ}C$ furnace with an air atmosphere. Oxidation was carried out for 30 days, after which the shape of the CCO thin film was confirmed by SEM and its corrosivity was analyzed through a potentiodynamic polarization experiment.

Etching characteristics of Al-Nd alloy thin films using magnetized inductively coupled plasma

  • Lee, Y.J.;Han, H.R.;Yeom, G.Y.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.10a
    • /
    • pp.56-56
    • /
    • 1999
  • For advanced TFT-LCD manufacturing processes, dry etching of thin-film layers(a-Si, $SiN_x$, SID & gate electrodes, ITO etc.) is increasingly preferred instead of conventional wet etching processes. To dry etch Al gate electrode which is advantageous for reducing propagation delay time of scan signals, high etch rate, slope angle control, and etch uniformity are required. For the Al gate electrode, some metals such as Ti and Nd are added in Al to prevent hillocks during post-annealing processes in addition to gaining low-resistivity($<10u{\Omega}{\cdot}cm$), high performance to heat tolerance and corrosion tolerance of Al thin films. In the case of AI-Nd alloy films, however, low etch rate and poor selectivity over photoresist are remained as a problem. In this study, to enhance the etch rates together with etch uniformity of AI-Nd alloys, magnetized inductively coupled plasma(MICP) have been used instead of conventional ICP and the effects of various magnets and processes conditions have been studied. MICP was consisted of fourteen pairs of permanent magnets arranged along the inside of chamber wall and also a Helmholtz type axial electromagnets was located outside the chamber. Gas combinations of $Cl_2,{\;}BCl_3$, and HBr were used with pressures between 5mTorr and 30mTorr, rf-bias voltages from -50Vto -200V, and inductive powers from 400W to 800W. In the case of $Cl_2/BCl_3$ plasma chemistry, the etch rate of AI-Nd films and etch selectivity over photoresist increased with $BCl_3$ rich etch chemistries for both with and without the magnets. The highest etch rate of $1,000{\AA}/min$, however, could be obtained with the magnets(both the multi-dipole magnets and the electromagnets). Under an optimized electromagnetic strength, etch uniformity of less than 5% also could be obtained under the above conditions.

  • PDF

Clinical Safety Evaluation of Interbody Fusion Cage Based on Tunable Elastic Modulus of the Cellular Structure According to the Geometrical Variables (형상학적 변수에 따른 다공성 구조의 가변탄성계수를 기반으로 한 추간체유합보형재의 임상적 안전성 평가)

  • Kim, SeongJin;Lee, YongKyung;Choi, Jaehyuck;Hong, YoungKi;Kim, JungSung
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.158-164
    • /
    • 2019
  • The interbody fusion cage used to replace the degenerative intervertebral disc is largely composed of titanium-based biomaterials and biopolymer materials such as PEEK. Titanium is characterized by osseointergration and biocompatibility, but it is posed that the phenomenon such as subsidence can occur due to high elastic modulus versus bone. On the other hand, PEEK can control the elastic modulus in a similar to bone, but there is a problem that the osseointegration is limited. The purpose of this study was to implement titanium material's stiffness similar to that of bone by applying cellular structure, which is able to change the stiffness. For this purpose, the cellular structure A (BD, Body Diagonal Shape) and structure B (QP, Quadral Pod Shape) with porosity of 50%, 60%, 70% were proposed and the reinforcement structure was suggested for efficient strength reinforcement and the stiffness of each model was evaluated. As a result, the stiffness was reduced by 69~93% compared with Ti6Al4V ELI material, and the stiffness most similar to cortical bone is calculated with the deviation of about 12% in the BD model with 60% porosity. In this study, the interbody fusion cage made of Ti6Al4V ELI material with stiffness similar to cortical bone was implementing by applying cellular structure. Through this, it is considered that the limitation of the metal biomaterial by the high elastic modulus may be alleviated.

Comparison of Microstructure and Hardness of Pure Copper Fabricated by Multi-Axial Forging and Multi-Axial Diagonal Forging (다축단조와 다축대각단조로 제조된 순동의 미세조직 및 경도 비교)

  • Lee, J.K.;Kwon, S.C.;Kim, S.T.;Jeong, H.T.;Kim, Y.G.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.5
    • /
    • pp.257-265
    • /
    • 2019
  • Multi-axial forging (MAF), a severe plastic deformation technique, is known to be difficult to obtain materials with homogeneous microstructures. Recently, multi-axial diagonal forging (MADF) process has been developed to solve this problem. In this study, in order to compare the microstructural and mechanical homogeneities of the MAFed and MADFed samples, oxygen-free copper (OFC) cubes measuring 25 mm in length were deformed through MAF and MADF processes and the average grain size and hardness were measured at the edge, face, and center regions of the samples. In the MAFed samples, ultrafine grains were formed at the center region, but a considerable amount of coarse grains remain at the face region. Therefore, the MAFed samples showed a high inhomogeneity in regards to grain size and hardness. On the contrary, in the case of the MADFed sample, the grain sizes at the edge, face, and center regions were similar and the hardness in all the regions are almost similar. This indicates that the MADFed sample has a homogeneous microstructure and uniform mechanical properties, which can be attributed to the homogeneous distribution of the effective strain throughout the material. The results of this study suggests that the MADF is a suitable process in the fabrication of high-strength copper materials with a homogeneous and ultrafine grain structure.

Influence of fly ash and GGBFS on the pH value of cement mortar in different curing conditions

  • Shafigh, Payam;Yousuf, Sumra;Ibrahim, Zainah;Alsubari, Belal;Asadi, Iman
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.419-428
    • /
    • 2021
  • The pH of cement-based materials (CBMs) is an important factor for their durability, sustainability, and long service life. Currently, the use of supplementary cementitious materials (SCMs) is becoming mandatory due to economic, environmental, and sustainable issues. There is a decreasing trend in pH of CBMs due to incorporation of SCMs. The determination of numerical values of pH is very important for various low and high volume SCMs blended cement mortars for the better understanding of different defects and durability issues during their service life. In addition, the effect of cement hydration and pozzolanic reaction of SCMs on the pH should be determined at initial and later ages. In this study, the effect of low and high-volume fly ash (FA) and ground granulated ballast furnace slag (GGBFS) cement mortars in different curing conditions on their pH values has been determined. Thermal gravimetric analysis (TGA) was carried out to support the findings from pH measurements. In addition, thermal conductivity (k-value) and strength activity indices of these cement mortars were discussed. The results showed that pH values of all blended cement mortars were less than ordinary Portland cement (OPC) mortar in all curing conditions used. There was a decreasing tendency in pH of all mortars with passage of time. In addition, the pH of cement mortars was not only dependent on the quantity of Ca(OH)2. The effect of adding SCMs on the pH value of cement mortar should be monitored and measured for both short and long terms.

Improvement of Reliability of Low-melting Temperature Sn-Bi Solder (저융점 Sn-Bi 솔더의 신뢰성 개선 연구)

  • Jeong, Min-Seong;Kim, Hyeon-Tae;Yoon, Jeong-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.1-10
    • /
    • 2022
  • Recently, semiconductor devices have been used in many fields owing to various applications of mobile electronics, wearable and flexible devices and substrates. During the semiconductor chip bonding process, the mismatch of coefficient of therm al expansion (CTE) between the substrate and the solder, and the excessive heat applied to the entire substrate and components affect the performance and reliability of the device. These problems can cause warpage and deterioration of long-term reliability of the electronic packages. In order to improve these issues, many studies on low-melting temperature solders, which is capable of performing a low-temperature process, have been actively conducted. Among the various low-melting temperature solders, such as Sn-Bi and Sn-In, Sn-58Bi solder is attracting attention as a promising low-temperature solder because of its advantages such as high yield strength, moderate mechanical property, and low cost. However, due to the high brittleness of Bi, improvement of the Sn-Bi solder is needed. In this review paper, recent research trends to improve the mechanical properties of Sn-Bi solder by adding trace elements or particles were introduced and compared.

Reactivity of aluminosilicate materials and synthesis of geopolymer mortar under ambient and hot curing condition

  • Zafar, Idrees;Tahir, Muhammad Akram;Hameed, Rizwan;Rashid, Khuram;Ju, Minkwan
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.71-81
    • /
    • 2022
  • Aluminosilicate materials as precursors are heterogenous in nature, consisting of inert and partially reactive portion, and have varying proportions depending upon source materials. It is essential to assess the reactivity of precursor prior to synthesize geopolymers. Moreover, reactivity may act as decisive factor for setting molar concentration of NaOH, curing temperature and setting proportion of different precursors. In this experimental work, the reactivities of two precursors, low calcium (fly ash (FA)) and high calcium (ground granulated blast furnace slag (GGBS)), were assessed through the dissolution of aluminosilicate at (i) three molar concentrations (8, 12, and 16 M) of NaOH solution, (ii) 6 to 24 h dissolution time, and (iii) 20-100℃. Based on paratermeters influencing the reactivity, different proportions of ternary binders (two precursors and ordinary cement) were activated by the combined NaOH and Na2SiO3 solutions with two alkaline activators to precursor ratios, to synthesize the geopolymer. Reactivity results revealed that GGBS was 20-30% more reactive than FA at 20℃, at all three molar concentrations, but its reactivity decreased by 32-46% with increasing temperature due to the high calcium content. Setting time of geopolymer paste was reduced by adding GGBS due to its fast reactivity. Both GGBS and cement promoted the formation of all types of gels (i.e., C-S-H, C-A-S-H, and N-A-S-H). As a result, it was found that a specified mixing proportion could be used to improve the compressive strength over 30 MPa at both the ambient and hot curing conditions.

Effect of Sc Addition on Microstructure, Electrical Conductivity, Thermal Conductivity and Mechanical Properties of Al-2Zn-1Cu-0.3Mg Based Alloy (Al-2Zn-1Cu-0.3Mg합금의 Sc첨가에 따른 미세조직, 전기전도도, 열전도도 및 기계적 특성 변화)

  • Na, Sang-Su;Kim, Yong-Ho;Son, Hyeon-Taek;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.542-549
    • /
    • 2020
  • Effects of Sc addition on microstructure, electrical conductivity, thermal conductivity and mechanical properties of the as-cast and as-extruded Al-2Zn-1Cu-0.3Mg-xSc (x = 0, 0.25, 0.5 wt%) alloys are investigated. The average grain size of the as-cast Al-2Zn-1Cu-0.3Mg alloy is 2,334 ㎛; however, this value drops to 914 and 529 ㎛ with addition of Sc element at 0.25 wt% and 0.5 wt%, respectively. This grain refinement is due to primary Al3Sc phase forming during solidification. The as-extruded Al-2Zn-1Cu-0.3Mg alloy has a recrystallization structure consisting of almost equiaxed grains. However, the as-extruded Sc-containing alloys consist of grains that are extremely elongated in the extrusion direction. In addition, it is found that the proportion of low-angle grain boundaries below 15 degree is dominant. This is because the addition of Sc results in the formation of coherent and nano-scale Al3Sc phases during hot extrusion, inhibiting the process of recrystallization and improving the strength by pinning of dislocations and the formation of subgrain boundaries. The maximum values of the yield and tensile strength are 126 MPa and 215 MPa for the as-extruded Al-2Zn-1Cu-0.3Mg-0.25Sc alloy, respectively. The increase in strength is probably due to the existence of nano-scale Al3Sc precipitates and dense Al2Cu phases. Thermal conductivity of the as-cast Al-2Zn-1Cu-0.3Mg-xSc alloy is reduced to 204, 187 and 183 W/MK by additions of elemental Sc of 0, 0.25 and 0.5 wt%, respectively. On the other hand, the thermal conductivity of the as-extruded Al-2Zn-1Cu-0.3Mg-xSc alloy is about 200 W/Mk regardless of the content of Sc. This is because of the formation of coherent Al3Sc phase, which decreases Sc content and causes extremely high electrical resistivity.

Effect of Wrapping Treatment on the Dispersion of MWNT in CNT/ABS/SAN Composites (CNT/ABS/SAN계의 분산성에 미치는 MWNT Wrapping 전처리 효과)

  • Kim, Sung Tae;Park, Hae Youn;No, Tae Kyeong;Kang, Dong Gug;Jeon, Il Ryeon;Seo, Kwan Ho
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.372-376
    • /
    • 2012
  • Carbon nanotubes (CNT) are considered as one of ideal nano-fillers in the field of composites with their excellent electrical, mechanical, and thermal properties. Therefore CNT composites are increasingly used in fabricating conductive materials, structural materials with high strength and low weight, and multifunctional materials. The main problem of the CNT composites is difficulty in the dispersion of CNT in the polymer matrix. In this study multi-walled carbon nanotubes (MWNT) were pretreated by the physical process utilizing a wrapping method. After the pretreatment polymer/MWNT nanocomposites were prepared by melt processing. The effect of functionalization MWNT by wrapping with styrene acrylonitrile (SAN) on the mechanical and electrical properties of acrylonitrile butadiene styrene resin (ABS)/MWNT composites was studied by comparing the properties of ABS mixed with the neat MWNT. Electrical and mechanical properties of ABS/MWNT nanocomposites were studied as a function of the functionalization and content of MWNT. The tensile strength of the ABS/MWNT nanocomposites increased, but the impact strength decreased. The polymer wrapping in ABS system has little effect on the improvement of electrical properties.