• Title/Summary/Keyword: high strength materials

Search Result 3,818, Processing Time 0.038 seconds

Experimental Study on Freezing-Thawing and Warm-Moisture Resistance of FRP Composites used in Strengthening RC Members (FRP 복합체의 동결융해 및 고온.고습 저항성에 관한 실험 연구)

  • Choi, Ki-Sun;You, Young-Chan;Lee, Han-Seung;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.345-348
    • /
    • 2006
  • FRP composites which are used in strengthening existing structure are usually adhered to the concrete surface, their performance are directly affected by environmental condition such as freezing-thawing and moisture. Accordingly, it is required to evaluate bond durability between FRP composite and concrete as well as FRP materials itself. The durability characteristics of FRP composite for freezing-thawing are evaluated in this study with the variables of concrete strength, type of FRP composite, freezing-thawing conditions and freezing-thawing cycle. In addition, material durability of GFRP sheet for high temperature/high humidity condition are examined in this experimental study.

  • PDF

Phase Transition and Thermal Expansion Behavior of Zirconia Setter Fabricated from Fused CaO Stabilized Zirconia

  • Park, Ji-Hoon;Bang, Il-Hwan;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.184-190
    • /
    • 2019
  • To improve resistance in thermal shock of zirconia setter which is frequently and repeatedly exposed to high temperature, high degree of porosity and control of thermal expansion are needed for which the fused CSZ (CaO stabilized zirconia) is used to produce the zirconia setter. In the present study, the effects of sintering temperature, cool down condition, addition of CaO stabilizer, and addition of other additives on phase transition and thermal expansion behavior of the fabrication process of zirconia setter, were examined. The zirconia setter, fabricated with fused CSZ at 1550℃, exhibited 20.4 MPa of flexural strength, 6.8% of absorbance, and 27.9% of apparent porosity. The rapid change in thermal expansion of zirconia setter is observed at temperature around 800℃, and it was reduced by low firing temperature, slowed cooled down, and addition of CaO.

Indium tin oxide - Carbon nanotubes nano composite electrodes using by nano cluster deposition for dye sensitized solar cell applications (나노 클러스터 증착법을 이용한 ITO-CNT 복합체의 염료감응형 태양전지의 이용)

  • Park, Jong-Hyun;Pammi, S.V.N.;Jung, Hyun-June;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.69-69
    • /
    • 2010
  • Carbon nano tubes (CNTs) have been attractive candidates for fundamental research studies due to their outstanding physical and chemical properties. High thermal and chemical stability and large surface area make CNTs an ideal platform for many nano materials systems. Several applications such as Several applications were proposed for CNTs many of which are concerned with conductive or high strength composites make them excellent candidates for a variety of energy conversion and storage technologies.

  • PDF

Deformation Behavior Analysis of pure-Zr during Equal Channel Multi-Angular Pressing (다단 ECAP 공정에서 pure-Zr 의 변형거동해석)

  • Noh, Ill-Joo;Kwon, Gi-Hwan;Chae, Soo-Won;Kwun, Sook-In;Kim, Myung-Ho;Hwang, Sun-Keun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.531-536
    • /
    • 2003
  • Equal channel angular pressing (ECAP) has been employed to produce materials with ultra-fine grains that have high strength and high corrosion resistance properties. In order to obtain super plastic deformation during ECAP, multipass angular pressing is frequently employed. In this paper, three-dimensional finite element analyses have been performed to investigate the deformation behavior of pure-Zr specimen and the effects of process parameters for equal channel multi-angular pressing (ECMAP) process. The results have been compared with some experimental results

  • PDF

development of high Strength and High Modulus Polymeric Materials by Using Surface Growth Technique (표면성장 방법에 의한 고강력, 고탄성률 섬유 고분자 재료의 개발)

  • 심현주
    • The Korean Journal of Rheology
    • /
    • v.5 no.2
    • /
    • pp.149-160
    • /
    • 1993
  • 표면성장법을 이용한 고강력, 고탄성률 섬유의 제조시, 결정화 온도에 따른 섬유 미 세구조와 물리적 성질의 상관 관계를 미세구조적, 열역학적 관점에서 규명하고자 초고분자 량 폴리에틸렌으로 섬유를 제조하고 결정화 온도에 따른 구조와 인장 성질의 변화를 용융 거동을 중심으로 관찰하였다, 일정길이하에서의 섬유의 용융인 제한 용융에서는 고분자 사 슬배좌의 구속으로 인해 사방정계-육방정계 전이가 일어났다 제한 용융 거동으로부터 라멜 라 구조와 펼쳐진 사슬 결정 부분을 분리할 수 있었으며 결정화 온도가 증가할수록 펼쳐진 사슬 결정의 양이 증가하였다. 결정화 온도가 증가할수록 쉬시-케밥구조에서 펼쳐진 사슬 구조로의 변화가 일어났으며 결정내의 결점도 줄어들었다. 결정화 온도가 증가할수록 구조 의 변화로 인해 인장 성질이 향상되었다. 인장 성질은 펼쳐진 사슬 결정의 양에 큰 영향을 받았다. 인장 강도는 펼쳐진 사릉의 양과 사슬내의 결점들에 의해 큰 영향을 받았으며 인장 탄성계수와 절단 신도는 인장 강도보다 펼쳐진 사슬의 양에 더 크게 영향 받았다.

  • PDF

The Characteristic Evaluation of Electron Beam Welding for Al 6061 alloy with thick-thickness plate (후판 Al 6061합금의 전자빔용접 특성 평가)

  • Jeong In-Cheol;Sim Deok-Nam;Kim Yong-Jae
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.68-70
    • /
    • 2006
  • For the aluminum material of the thick-thickness more than 100mm Penetration depth Electron beam welding is effectively applicable with a characteristic of high energy intensity. But Al 6061 alloy has high crack sensitivity due to minor alloys, which are silicon, magnesium, copper etc. With a sample block of 135mm thickness EBW test was performed in vertical position. As tensile strength has $210{\sim}220N/mm^2$ with weld area broken. Bend test shows low ductility with fracture of partly specimens. Chemical contents of alloys show no difference between weld and base metal. Defect in middle weld area figures out typical hot crack due to low melting materials. Micro structure of weld area has some difference compare to HAZ and base metal. As a result of EBW test for Al 6061 alloy, it shows that weld defect could be occurred even though establishing of optimum weld parameter condition.

  • PDF

Laser welding of Magnesium alloy sheet for light car body (경량 차체를 위한 마그네슘 합금 압연판재의 레이저 용접)

  • Lee Mok-Yeong;Jang Ung-Seong;Yun Byeong-Hyeon
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.71-73
    • /
    • 2006
  • Magnesium alloys are becoming important material for light weight car body, due to their low specific density but high specific strength. However they have a poor weldability, caused high oxidization tendency and low vapor temperature. In this study, the laser welding performance of magnesium alloys was investigated for automobile application. The materials were rolled magnesium alloy sheet contains 3%Al and 1%Zn. To evaluate the weldability, we examined the appearance of welding bead. The mechanical property was measured for welded specimen by tensile test. And formability was checked with the Erichsen tester. For the results, the performance of weld in laser welding was enough for press forming such as car body. But it was recommended to use filler wire for reduce the under fill.

  • PDF

Electrical Properties of Silicone Rubber for High-Voltage (고전압용 실리콘 고무의 전기적 특성)

  • 김왕곤;홍진웅
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.41-46
    • /
    • 2000
  • Silicone rubbers are elastomeric materials and organic copolymers, of which backbone is siloxane with high bonding strength. Silicone rubbers have been used as an power insulator because they are well weather proof, ozone proof and have excellent electric characteristics, thermal stability, cold resistance and low surface energy. Especially, it is known that they have very excellent characteristics at 200[$^{\circ}C$]. For this study, we made silicone rubbers as specimens and measured volume resistivity due to applied voltage and a variation of temperature 25[$^{\circ}C$] to 180[$^{\circ}C$]. Also we measured dielectric loss tangent due to applied voltage at temperature range 25[$^{\circ}C$] to 180[$^{\circ}C$] and frequency range 20[Hz] to 1${\times}10^6$[Hz].

  • PDF

Pattern Analysis of the Defects within the Cable Insulation for UHV Underground Transmission Using Partial Discharge (부분방전을 이용한 초고압 지중 송전 절연 케이블 내부 결함의 패턴분석)

  • Park, Jae-Hwa;Lee, Gwang-Yeol;Chae, Seok;Oh, Young-Seok;Kim, Hak-Sung
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.175-179
    • /
    • 1998
  • The insulation of cable which used for Ultra-High Voltage(UHV) underground power transmission requires excellent insulation capability for high voltage. The typical insulation materials are used XLPE, EPR, etc, but insulation efficiency of these is affected by void or alien substances, existed at the inside of insulators. In this paper, the partial discharge patterns of the defects within insulation cable are observed and analyzed. In this test, void, fiber and metal inclusions which possibly exist in cables, are simulated and investigated the patterns of partial discharges for each models Also the relations between calculated field strength and the insulation breakdown voltage. The experiment shows distinct partial discharge patterns in accordance with the kinds of defects within Insulation cable.

  • PDF

ACI 349 Code Change to Use the Gr.80 Headed Deformed Bars in Nuclear Power Plant Structures (Gr.80 확대머리철근의 원전구조물 적용을 위한 ACI 349 코드개정에 관한 연구)

  • Lee, Byung Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.200-201
    • /
    • 2017
  • Generally, a lot of reinforcements are used in nuclear power plant concrete structures, and it may cause several potential problems when concrete is poured. Because of the congestion caused by hooked bars, embedded materials, and other reinforcements, it is too difficult to pour concrete into structural member joint area. The purpose of this study is to change ACI 349 Code for using the large-size(57mm) and high-strength(Gr.80) headed deformed bars instead of standard hooked bars in nuclear power plant concrete structures in order to solve the congestion problems.

  • PDF