• Title/Summary/Keyword: high strength materials

Search Result 3,818, Processing Time 0.032 seconds

Analysis of composite girders with hybrid GFRP hat-shape sections and concrete slab

  • Alizadeh, Elham;Dehestani, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1135-1152
    • /
    • 2015
  • Most of current bridge decks are made of reinforced concrete and often deteriorate at a relatively rapid rate in operational environments. The quick deterioration of the deck often impacts other critical components of the bridge. Another disadvantage of the concrete deck is its high weight in long-span bridges. Therefore, it is essential to examine new materials and innovative designs using hybrid system consisting conventional materials such as concrete and steel with FRP plates which is also known as composite deck. Since these decks are relatively new, so it would be useful to evaluate their performances in more details. The present study is dedicated to Hat-Shape composite girder with concrete slab. The structural performance of girder was evaluated with nonlinear finite element method by using ABAQUS and numerical results have been compared with experimental results of other researches. After ensuring the validity of numerical modeling of composite deck, parametric studies have been conducted; such as investigating the effects of constituent properties by changing the compressive strength of concrete slab and Elasticity modulus of GFRP materials. The efficacy of the GFRP box girders has been studied by changing GFRP material to steel and aluminum. In addition, the effect of Cross-Sectional Configuration has been evaluated. It was found that the behavior of this type of composite girders can be studied with numerical methods without carrying out costly experiments. The material properties can be modified to improve ultimate load capacity of the composite girder. strength-to-weight ratio of the girder increased by changing the GFRP material to aluminum and ultimate load capacity enhanced by deformation of composite girder cross-section.

Analysis of Mechanical Properties of Wood Flours Composites to Improve the Strength of Truck Deck Floor Boards (트럭 Deck Floor Board의 강도향상을 위한 목분복합재의 기계적특성 분석)

  • Yun, Sung-Woo;Go, Sun-Ho;Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2019
  • The deck floor of a the cargo truck becomesis damaged and aged due to the continuous loading of the loading cargo and external environmental factors. Floor boards made of wood and metal are often used. In the case of wood, the cost is high due to the use of imported wood, and the strength is easily deterioratesd due to environmental factors. In the case of metal materials, the durability is higher than that of wood, but problems are raised due to the effect of major factors that hinder the weight reduction, and the effects of corrosion. In order to replace this stucturestructural design, this study proposed a wood fiber composite using natural raw materials. Woody composites are being used as environmentally and friendly exterior materials with the combined advantages of plastic, and wood,; low cost and low density. However, due to the nature of the woody composites, the properties are differentdiffer depending on the contents of the matrix, reinforcing agent, additives, compatibilizer, etc. In this study, we investigate these problems through analysis of the microstructure and mechanical properties according to proper content and injection molding conditions. As a result, it is considered that the wood deck composite can replaced the current Deck Floor Boardreplace current deck floor boards through continuous continued research and results of this study.

Mechanical and Elastic Wave Properties of STS316L with Different Reverse Transformation Temperature and Time (역변태 온도 및 시간이 다른 STS316L의 기계적 및 탄성파 특성)

  • Do, Jae-Yoon;Tak, Young-Joon;Shin, Ki-Hang;Nam, Ki-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1055-1062
    • /
    • 2022
  • In this study, the mechanical properties of 80% cold-rolled austenitic 316L stainless steel were evaluated using specimens subjected to reverse transformation at 500-750℃ for 20 minutes and reverse transformation at 700℃ for 2-60 minutes. Also, for the elastic wave obtained from the tensile test, the dominant frequency according to the reverse transformation condition was investigated by time-frequency analysis. The SEM image of the 80% cold-rolled material was transformed into martensite and showed line and cross shapes. The TEM image showed that line shapes were shown at the grain, and grain boundary of martensite. The higher the heat treatment temperature and the longer time, the larger the grain. Tensile strength decreased as the heat treatment temperature and time increased, but elongation increased. Hardness was proportional to tensile strength. This is because the grain with different directions showed the same direction due to reverse transformation. The dominant frequency was decreased and then increased as the temperature and time increased. This is because the direction of the grain is different at a low temperature and the same direction is shown at a high temperature.

Drying Shrinkage and Strength Properties of High-Fluidity Polymer-Modified Mortar (고유동 폴리머시멘트모르타르의 건조수축 및 강도 특성)

  • Joo Myung-Ki;Lee Youn-Su;Jung In-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.651-657
    • /
    • 2004
  • The effects of polymer-cement ratio, antifoamer content and shrinkage-reducing agent content on the air content, setting time, drying shrinkage and strength of high-fluidity polymer-modified mortars using redispersible polymer powder are examined. As a result, the air content of the polymer-modified mortars using redispersible polymer powder tends to decrease nth increasing polymer-cement ratio and antifoamer content. Regardless of the antifoamer content, the setting time of the polymer-modified mortars using redispersible polymer powder tends to delayed with increasing polymer-cement ratio. Irrespective of the antifoamer content, the drying shrinkage of the polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and shrinkage-reducing agent content. Regardless of the antifoamer content, the flexural and tensile strengths of the polymer-modified mortars using redispersible polymer powder tends to increase with increasing polymer-cement ratio, and tend to decrease with increasing shrinkage-reducing agent content. However, the compressive strength of the polymer-modified mortars using redispersible polymer powder decreases with increasing polymer-cement ratio and shrinkage-reducing agent content.

Strength of Composit Single-lap Bonded Joints with Different Saltwater Moisture Contents (서로 다른 수분율을 갖도록 염수환경에 노출된 복합재 접착체결부의 강도)

  • Yang, Hyeon-Jeong;Jeong, Mun-Gyu;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.48-54
    • /
    • 2011
  • The effect of moisture contents by salt water on the strength of composite single-lap bonded joints is investigated. The specimens were manufactured in an autoclave by secondary bonding and immersed in the 3.5% salt water of $71^{\circ}C$ for different durations to get various moisture contents; 0, 0.2, 0.5, 1.0, and 2.0%(saturation). A total of 80 joint specimens were tested for 5 different moisture contents and 2 temperature environments. Test results show that while the joint strengths after the saturation of moisture decrease compared to those of dry ones, the strengths of the pre-saturated joint up to 1.0% of moisture content increase in both room and elevated temperature conditions. It is also shown that the strengths of joints tested in elevated temperature are slightly higher than the strength in room temperature by 2-5% until the moisture content reaches 1 %. In contrast, the high temperature strength of the saturated joint is about 5% lower than the room temperature strength.

BRAZING CHARACTERISTICS BETWEEN CEMENTED CARBIDES AND STEEL USED BY AG-IN BRAZING FILLER

  • Nakamura, Mitsuru;Itoh, Eiji
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.551-554
    • /
    • 2002
  • As a general rule, the brazing process between cemented carbides and steel used by Silver (Ag) type brazing filler. The composition of Ag type filler were used Ag-Cu-Zn-Cd type filler mainly. But, the demand of Cadmium (Cd)-free in Ag type filler was raised recently. The reason why Cd-free in Ag brazing filler were occupied to vaporize as a CdO$_2$ when brazing process, because of Cd element was almost low boiling point of all Ag type filler elements. And, CdO$_2$ was a very harmful element for the human body. This experiment was developed Cd-freeing on Ag type filler that was used Indium (In) instead of Cd element. In this experiment, there were changed from 0 to 5% In addition in Ag brazing filler and investigated to most effective percentage of Indium. As a result, the change of In addition instead of Cd, there was a very useful element and obtained same property only 3% In added specimens compared to Cd 19% added specimens. These specimens were obtained same or more deflective strength. In this case, there were obtained 70 MPa over strength and wide brazing temperature range 650-800 C. A factor of deflective strength were influenced by composition and the shape of $\beta$ phase and between $\beta$ phase and cemented carbides interface. Indium element presented as $\alpha$ phase and non-effective factor directly, but it's occupied to solid solution hardening as a phase. $\beta$ phase were composed 84-94% Cu-Ni-Zn elements mainly. Especially, the presence of Ni element in interface was a very important factor. Influence of condensed Ni element in interface layer was increased the ductility and strength of brazing layer. Therefore, these 3% In added Ag type filler were caused to obtain a high brazing strength.

  • PDF

An experimental study on hydrothermal degradation of cubic-containing translucent zirconia

  • Kengtanyakich, Santiphab;Peampring, Chaimongkon
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.5
    • /
    • pp.265-272
    • /
    • 2020
  • PURPOSE. The aims of this study were to investigate mechanical properties and hydrothermal degradation behaviour of the cubic-containing translucent yttrium oxide stabilized tetragonal zirconia polycrystal (Y-TZP). MATERIALS AND METHODS. Four groups of Y-TZP (T, ST, XT, and P), containing different amount of cubic crystal, were examined. Specimens were aged by autoclaving at 122℃ under 2 bar pressure for 8 h. Phase transformation was analyzed using X-ray diffraction (XRD) to measure phase transformation (t→m). Kruskal-Wallis test was used to determine the difference. Surface hardness, biaxial flexural strength, and fracture toughness in values among the experimental groups and verified with Wilcoxon matched pairs test for hardness values and Mann Whitney U for flexural strength and fracture toughness. RESULTS. XRD analysis showed no monoclinic phase in XT and P after aging. Only Group T showed statistically significant decreases in hardness after aging. Hydrothermal aging showed a significant decrease in flexural strength and fracture toughness in group T and ST, while group XT and P showed no effect of aging on fractural strength and fracture toughness with P<.05. CONCLUSION. Hydrothermal aging caused reduction in mechanical properties such as surface hardness, biaxial flexural strength, and fracture toughness of Y-TZP zirconia. However, cubic-containing zirconia (more than 30% by volume of cubic crystal) was assumed to have high resistance to hydrothermal degradation. Clinical significance: Cubic-containing zirconia could withstand the intraoral aging condition. It could be suggested to use as a material for fabrication of esthetic dental restoration.

Strength Development and Durability of Geopolymer Mortar Using the Combined Fly ash and Blast-Furnace Slag (플라이애시와 고로슬래그 미분말을 혼합 사용한 지오폴리머 모르타르의 강도발현 및 내구성)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • In this study, we investigated the strength development and durability of geopolymer mortar using blast furnace slag only, and admixed with blast-furnace slag and fly ash as cementious materials in oder to develop cementless geopolymer concrete. In order to compare with the geopolymer mortar, the normal mortar using ordinary portland cement was also test. In view of the results, we found out that strength development, the resistance to freezing-thawing of the geopolymer mortar have better than the mortar using ordinary portland cement. Especially, using the combined with blast furnace slag and fly ash develop high strength of above 60 MPa, and improve the resistance of freezing-thawing of approximately 20%, but promote the velocity of carbonation of 2.2~3.5 times.

Influence of Design Variables on Failure Loads of Sandwich Beam (설계변수에 대한 샌드위치 보의 파손하중)

  • Jongman Kim
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.18-24
    • /
    • 2003
  • Sandwich structures have been widely used in the applications of vessel industry, where high structural stiffness is required with small addition of weight. It is so significant to think of the effect of the variables in the design process of the sandwich structure for the concentrated loads. This paper describes the influence of design variables, such as core density, core thickness and face thickness ratio, on the strength of sandwich beam. The theoretical failure loads based on the 2-D elasticity theory agree well with the experimental yield or failure loads, which are measured at the three point bending laboratory test using AS4/3501-6 facing and polyurethane foam core sandwich beam. The comparison of those yield or failure loads was also done with the ratio of the top to bottom face thickness. The theoretical optimum condition is obtained by finding the intersection point of failure modes involved, which gives optimum core density of the sandwich beam for strength and stiffness. In the addition, the effect of unequal face thickness for the optimized and off-optimized sandwich beams for the strength was compared with the ratio of loading length to beam length, and the variations of strength and stiffness were discussed with the relative ratio of core to face mass.

Test and simulation of circular steel tube confined concrete (STCC) columns made of plain UHPC

  • Le, Phong T.;Le, An H.;Binglin, Lai
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.643-657
    • /
    • 2020
  • This study presents experimental and numerical investigations on circular steel tube confined ultra high performance concrete (UHPC) columns under axial compression. The plain UHPC without fibers was designed to achieve a compressive strength ranged between 150 MPa and 200 MPa. Test results revealed that loading on only the UHPC core can generate a significant confinement effect for the UHPC core, thus leading to an increase in both strength and ductility of columns, and restricting the inherent brittleness of unconfined UHPC. All tested columns failed by shear plane failure of the UHPC core, this causes a softening stage in the axial load versus axial strain curves. In addition, an increase in the steel tube thickness or the confinement index was found to increase the strength and ductility enhancement and to reduce the magnitude of the loss of load capacity. Besides, steel tube with higher yield strength can improve the post-peak behavior. Based on the test results, the load contribution of the steel tube and the concrete core to the total load was examined. It was found that no significant confinement effect can be developed before the peak load, while the ductility of post-peak stage is mainly affected by the degree of the confinement effect. A finite element model (FEM) was also constructed in ABAQUS software to validate the test results. The effect of bond strength between the steel tube and the UHPC core was also investigated through the change of friction coefficient in FEM. Furthermore, the mechanism of circular steel tube confined UHPC columns was examined using the established FEM. Based on the results of FEM, the confining pressures along the height of each modeled column were shown. Furthermore, the interaction between the steel tube and the UHPC core was displayed through the slip length and shear stresses between two surfaces of two materials.