• Title/Summary/Keyword: high strength materials

Search Result 3,818, Processing Time 0.027 seconds

Etchless Fabrication of Cu Circuits Using Wettability Modification and Electroless Plating (젖음성 차이와 무전해도금을 이용한 연성 구리 회로패턴 형성)

  • Park, Sang-Jin;Ko, Tae-Jun;Yoon, Juil;Moon, Myoung-Woon;Han, Jun Hyun
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.622-629
    • /
    • 2015
  • Cu circuits were successfully fabricated on flexible PET(polyethylene terephthalate) substrates using wettability difference and electroless plating without an etching process. The wettability of Cu plating solution on PET was controlled by oxygen plasma treatment and $SiO_x$-DLC(silicon oxide containing diamond like carbon) coating by HMDSO(hexamethyldisiloxane) plasma. With an increase of the height of the nanostructures on the PET surface with the oxygen plasma treatment time, the wettability difference between the hydrophilicity and hydrophobicity increased, which allowed the etchless formation of a Cu pattern with high peel strength by selective Cu plating. When the height of the nanostructure was more than 1400 nm (60 min oxygen plasma treatment), the reduction of the critical impalement pressure with the decreasing density of the nanostructure caused the precipitation of copper in the hydrophobic region.

A Study on Trend of Tensile Properties with Ratio of Water Mixture under Low and High Temperature Environment in Hydroponic Polyurethane Waterproofing Materials (수경화성 폴리우레탄 도막재의 물 혼합비에 따른 저온 및 고온 환경에서의 인장성능 변화 추이 연구)

  • Kim, Dong-Bum;An, Hyun-Ho;Kim, Sun-Do;Park, Wan-Goo;Park, Jin Sang;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.211-212
    • /
    • 2016
  • Due to a lack of objective and adequate study on the physical effects on hydroponic polyurethane waterproofing material water mixture ratio, construction site workers are having to rely on their hands-on experience to determine a mixture ratio, resulting in difficulty of maintaining quality management. Particularly in cases of rooftop exposed type hydroponic polyurethane materials, the varying temperature conditions make it further difficult for quality management control. in this regard, this study conducts tensile strength testing and compares the tensility change rates hydroponic polyurethane waterproofing materials with various water mixture ratios ranging from 0%~50% and exposed to alternating temperature change between -20℃ to 60℃ in the span of 1 hour after curing for 14 days.

  • PDF

Evaluation of Material Properties about CFRP Composite Adapted for Wind Power Blade by using DIC Method (풍력발전기 블레이드 적용 CFRP 복합재료의 DIC 방법에 의한 재료특성치 평가)

  • Kang, J.W.;Kwon, O.H.;Kim, T.K.;Cho, S.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.17-23
    • /
    • 2010
  • In recent, the capacity of a commercial wind power has reached the range of 6 MW, with large plants being built world-wide on land and offshore. The rotor blades and the nacelle are exposed to external loads. Wind power system concepts are reviewed, and loadings by wind and gravity as important factors for the mechanical performance of the materials are considered. So, the mechanical properties of fiber composite materials are discussed. Plain woven fabrics Carbon Fiber Reinforced Plastics (CFRP) are advanced materials which combine the characteristics of the light weight, high stiffness, strength and chemical stability. However, Plain woven CFRP composite have a lot of problems, especially delamination, compared with common materials. Therefore, the aim of this work is to estimate the mechanical properties using the tensile specimen and to evaluate strain using the CNF specimen on plain woven CFRP composites. For the strain, we tried to apply to plain woven CFRP using Digital Image Correlation (DIC) method and strain gauge. DIC method can evaluate a strain change so it can predict a location of fracture.

Influence of Selective Oxidation Phenomena in CGLs on Galvanized Coating Defects Formation

  • Gong, Y.F.;Birosca, S.;Kim, Han S.;De Cooman, B.C.
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • The gas atmosphere in continuous annealing and galvanizing lines alters both composition and microstructure of the surface and sub-surface of sheet steel. The formation and morphology of the oxides of alloying elements in High Strength Interstitial Free (HS-IF), Dual Phase (DP) and Transformation-Induced Plasticity (TRIP) steels are strongly influenced by the furnace dew point, and the presence of specific oxide may result in surface defects and bare areas on galvanized sheet products. The present contribution reviews the progress made recently in understanding the selective formation of surface and subsurface oxides during annealing in hot dip galvanizing and conventional continuous annealing lines. It is believed that the surface and sub-surface composition and microstructure have a pronounced influence on galvanized sheet product surface quality. In the present study, it is shown that the understanding of the relevant phenomena requires a combination of precise laboratory-scale simulations of the relevant technological processes and the use of advanced surface analytical tools.

Assessment of recycled concrete aggregates as a pavement material

  • Jayakody, Shiran;Gallage, Chaminda;Kumar, Arun
    • Geomechanics and Engineering
    • /
    • v.6 no.3
    • /
    • pp.235-248
    • /
    • 2014
  • Population increase and economic developments can lead to construction as well as demolition of infrastructures such as buildings, bridges, roads, etc resulting in used concrete as a primary waste product. Recycling of waste concrete to obtain the recycled concrete aggregates (RCA) for base and/or sub-base materials in road construction is a foremost application to be promoted to gain economical and sustainability benefits. As the mortar, bricks, glass and reclaimed asphalt pavement (RAP) present as constituents in RCA, it exhibits inconsistent properties and performance. In this study, six different types of RCA samples were subjected classification tests such as particle size distribution, plasticity, compaction test, unconfined compressive strength (UCS) and California bearing ratio (CBR) tests. Results were compared with those of the standard road materials used in Queensland, Australia. It was found that material type 'RM1-100/RM3-0' and 'RM1-80/RM3-20' samples are in the margin of the minimum required specifications of base materials used for high volume unbound granular roads while others are lower than that the minimum requirement.

Turning Characteristics of Various Tool Materials in the Machining of Ti-6Al-4V (Ti-6Al-4V 티타늄 합금의 공구 재종에 따른 선삭 특성)

  • Choi, Jong-Guen;Kim, Hyung-Sun;Chung, Jin-Oh
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.38-44
    • /
    • 2008
  • Titanium and its alloys, due to their superior properties of high specific strength and excellent corrosion resistance, are increasingly used in living applications in the 21century. The applications in aerospace and medical industries demand machining process more frequently to obtain a desired product. But unfortunately, this material is one of the most difficult-to-cut. In the turning process of titanium alloys, the key point for successful work is to select proper tool materials and cutting conditions. This study suggests a guidance for selecting the tool materials and the cutting speeds to improve tool life and surface integrity in Ti-6Al-4V titanium turning process. The experiments investigate the change of surface roughnesses, cutting forces and flank wear with various cutting parameters of tool materials, depth of cuts and feeds. As the results, K10 type of insert tip was assured as the best for turning of Ti-6Al-4V titanium alloy.

Formation of Bioactive Ceramic Foams by Polymer Pyrolysis and Self-Blowing (고분자 열분해와 자가발포를 이용한 생체활성 다공체의 제조)

  • Kwak, Dae-Hyun;Kim, Jin-Ho;Lee, Eun-Ju;Kim, Deug-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.412-417
    • /
    • 2011
  • Formation and characterization of hydroxyapatite-based porous ceramics derived from polymer pyroysis were investigated. Polymer based process is chosen for preparing porous hydroxyapatite-based ceramics having a high mechanical strength. The hydroxyapatite-based porous ceramic was prepared by a self-blowing process of a polymethylsiloxane with filler and pyrolyzed at above $1000^{\circ}C$. Biphasic material consisted of hydroxyapatite and CaO has been prepared by solid state reaction from calcium hydroxide($Ca(OH)_2$) and calcium hydrogen phosphate dihydrate($CaHPO_4{\cdot}2H_2O$) as a filler material. The influence of filler content on mechanical properties was evaluated. The change of crystalline phase, microstructure and mechanical properties were investigated and discussed.

Microstructure and Mechanical Properties of a Cold-Rolled Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn System Alloy (냉간압연된 Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn계 합금의 미세조직 및 기계적 특성)

  • Jo, Sang-Hyeon;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.246-251
    • /
    • 2020
  • The annealing characteristics of cold-rolled Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn alloy, newly designed as an automobile material, are investigated in detail, and compared with those of other aluminum alloys. Using multi-pass rolling at room temperature, the ingot aluminum alloy is cut to a thickness of 4 mm, width of 30 mm, and length of 100 mm to reduce the thickness to 1 mm (r = 75 %). Annealing after rolling is performed at various temperatures ranging from 200 to 500 ℃ for 1 hour. The specimens annealed at temperatures up to 300 ℃ show a deformation structure; however, from 350 ℃ they have a recrystallization structure consisting of almost equiaxed grains. The hardness distribution in the thickness direction of the annealed specimens is homogeneous at all annealing temperatures, and their average hardness decreases with increasing annealing temperature. The tensile strength of the as-rolled specimen shows a high value of 496 MPa; however, this value decreases with increasing annealing temperature and becomes 338 MPa after annealing at 400 ℃. These mechanical properties of the specimens are compared with those of other aluminum alloys, including commercial 5xxx system alloys.

Effect of Cooling Rates on Mechanical Properties and Microstructure of Inconel Alloys (인코넬 합금의 미세조직과 기계적 특성에 미치는 냉각속도 영향)

  • Park, No-Kyeong;Lee, Ho-Seong;Chai, Young-Suck
    • Korean Journal of Materials Research
    • /
    • v.17 no.10
    • /
    • pp.555-559
    • /
    • 2007
  • The mechanical properties and microstructure of Inconel 690 and 600 alloys with various cooling rates were investigated. Optical microscopy and scanning electron microscopy observations indicated that in case of the cooling rate of $0.5^{\circ}C/min$, discontinuous carbides along the grain boundaries were formed and when the cooling rate was $10^{\circ}C/min$, continuous carbides were formed in Inconel 690 and 600 alloys. For the annealed Inconel 690 alloy with high Cr content, a lot of annealing twins, which led the preferential growth of (111) planes, were observed. However, the annealed Inconel 600 alloy with low Cr content showed a few annealing twins and the preferential growth of (200) planes. Inconel 600 alloy had a larger value of ultimate tensile strength (UTS) than Inconel 690 alloy.

Nondestructive Evaluation for Mechanical Degradation of Ultrasuper-Critical Heat-Resistance Steel by Reversible Permeability (가역투자율를 이용한 초초임계압 내열강의 기계적 열화에 관한 비파괴평가)

  • Ahn, SeongBin;Kim, JaeJin;Seo, DongMin;Kim, ChungSeok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.46-52
    • /
    • 2018
  • Nondestructive evaluation for mechanical degradation of ultrasuper-critical (USC) heat-resistance steel, which is attractive to the next generation of power plants is studied by magnetic reversible permeability. The interrelationship between reversible permeability and high-temperature mechanical degradation has been investigated by precise measurement of permeability nondestructively. Also, the effects of microstructural variation on reversible permeability are discussed. Isothermal aging was observed to coarsen the tempered carbides ($Cr_{23}C_6$), generated the intermetallic phases ($Fe_2W$), and grow rapidly during aging. The dislocation density also decreases steeply within lath interior. The peak to peak interval (PPI) of reversible permeability profile decreased drastically during the initial 500 h aging period, and was thereafter observed to decrease only slightly. The variation in PPI is closely related to the decrease in the number of pinning sites and the degradation in tensile strength.