• Title/Summary/Keyword: high strength materials

Search Result 3,820, Processing Time 0.031 seconds

Effects of Blending Materials on the High Strength of Hardened Cement Paste (시멘트 경화체의 강도특성에 미치는 혼합재료의 영향)

  • 추용식;김정환
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1536-1544
    • /
    • 1994
  • DSP technique was applied to improve the high strength characteristics of hardened cement paste using pozzolan materials as blending materials, and pozzolan reactivity was investigated. Pozzolanic materials such as diatomaceous earth, fly ash and hydrated silica were used as blending material. And also superplasticizer was added to cement for molding the specimens. After curing for 60 days, the specimens substituted with 10 and 15 wt% of diatomaceous earth showed better strength characteristics than the specimen with fly ash. The specimen substituted 7 wt.% of hydrated silica exhibited excellent strength with above 800 kg/$\textrm{cm}^2$.

  • PDF

Spatting Resistance of High Strength RC Column Covering Spray-on Materials of Fiber Composite Spray Mortar(FCSM) (섬유복합모르터의 뿜칠마감에 의한 고강도콘크리트 기둥부재의 폭렬방지)

  • Song Yong-Won;Han Dong-Yeob;Lee Gun-Cheol;Goh Kyoung-Taek;Kim Jin-Soo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.5-8
    • /
    • 2006
  • High strength concrete has been increasingly used in high rue building and it is very obvious re consider fire resistance performance of that. Unlike the normal strength concrete, high strength concrete in sudden elevating temperature at fire is susceptible to spalling with severe explosion and surface split, due to high density of concrete. In order to endure the spalling, inner space temperature of concrete should be control less than certain point. Therefore this study investigated the influence of covering materials on high strength concrete finishing spray-on materials of fiber composite spray mortar(FCSM). Both polypropylene(PP) and polyvinyl alcohol(PVA) fiber were used in this test. Test showed that concrete, covering 18mm mortar containing PVA fiber and confining metal lath 2.3mm thickness, decreased 50% of main bar ambient temperature. compared with control concrete. In addition, concrete covering 18mm mortar without fiber caused falling of covering materials and then it was exposed in elevating temperature. As a result, spatting of the concrete occurred same as control concrete. However, concrete covering spray-on mortar containing PVA or PP fiber resisted spatting occurrence.

  • PDF

Analysis on Deformation Behavior of High Strength Steel using the Finite Element Method in Conjunction with Constitutive Model Considering Elongation at Yield Point (항복점연신이 고려된 유한요소 해석을 통한 고강도강의 변형 거동 연구)

  • Yoon, Seung Chae;Moon, Man Been;Kim, Hyoung Seop
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.598-604
    • /
    • 2010
  • Tensile tests are widely used for evaluating mechanical properties of materials including flow curves as well as Young's modulus, yield strength, tensile strength, and yield point elongation. This research aims at analyzing the plastic flow behavior of high strength steels for automotive bodies using the finite element method in conjunction with the viscoplastic model considering the yield point elongation phenomenon. The plastic flow behavior of the high strength steel was successfully predicted, by considering an operating deformation mechanism, in terms of normalization dislocation density, and strain hardening and accumulative damage of high strength steel using the modified constitutive model. In addition, the finite element method is employed to track the properties of the high strength steel pertaining to the deformation histories in a skin pass mill process.

Shear Failure Modes of Reinforced Concrete Members with High-Strength Materials (고강도 재료가 사용된 철근콘크리트 부재의 전단파괴모드)

  • Lee, Jung-Yoon;Kim, Kyung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.53-60
    • /
    • 2006
  • The shear failure modes of reinforced concrete members using high-strength materials (high-strength concrete and high-strength steel) are different to those of reinforced concrete members using normal-strength materials. The reinforced concrete members using high-strength materials are inclined to fail due to concrete crushing before the shear reinforcing bar reaches its yield strength. This paper presents an evaluation equation to calculate the maximum shear reinforcement ratio based on the material stresses and strains when the reinforced concrete members fail in shear. The maximum shear reinforcement ratio calculated by the proposed equation increases as the compressive strength of concrete increases. Test results of 97 reinforced concrete members reported in the technical literatures are used to check the validity of the proposed equation. The comparison between the test results and the ratio calculated using the proposed equation indicated that the shear failure modes depended on the interaction between the amount of shear reinforcement and the compressive strength of concrete.

  • PDF

Predictions of curvature ductility factor of doubly reinforced concrete beams with high strength materials

  • Lee, Hyung-Joon
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.831-850
    • /
    • 2013
  • The high strength materials have been more widely used in reinforced concrete structures because of the benefits of the mechanical and durable properties. Generally, it is known that the ductility decreases with an increase in the strength of the materials. In the design of a reinforced concrete beam, both the flexural strength and ductility need to be considered. Especially, when a reinforced concrete structure may be subjected an earthquake, the members need to have a sufficient ductility. So, each design code has specified to provide a consistent level of minimum flexural ductility in seismic design of concrete structures. Therefore, it is necessary to assess accurately the ductility of the beam sections with high strength materials in order to ensure the ductility requirement in design. In this study, the effects of concrete strength, yield strength of reinforcement steel and amount of reinforcement including compression reinforcement on the complete moment-curvature behavior and the curvature ductility factor of doubly reinforcement concrete beam sections have been evaluated and a newly prediction formula for curvature ductility factor of doubly RC beam sections has been developed considering the stress of compression reinforcement at ultimate state. Based on the numerical analysis results, the proposed predictions for the curvature ductility factor are verified by comparisons with other prediction formulas. The proposed formula offers fairly accurate and consistent predictions for curvature ductility factor of doubly reinforced concrete beam sections.

Improving the Mechanical Properties of Salt Core through Reinforcing Fibers

  • Ahrom Ryu;Soyeon Yoo;Min-Seok Jeon;Dongkyun Kim;Kiwon Hong;Sahn Nahm;Ji-Won Choi
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.159-163
    • /
    • 2023
  • Salt cores have attracted considerable attention for their application to the casting process of electric vehicle parts as a solution to ecological issues. However, the salt core still has low mechanical strength for use in high-pressure die casting. In this study, we investigated the improvements in the bending strength of KCl-based salt cores resulting from the use of reinforcing materials. KCl and Na2CO3 powders were used as matrix materials, and glass fiber and carbon fiber were used as reinforcing materials. The effects of carbon fiber and glass fiber contents on the bending strength properties were investigated. Here, we obtained a new fiber-reinforced salt core composition with improved bending strength for high-pressure die casting by adding a relatively small amount of glass fiber (0.3 wt%). The reinforced salt core indicates the improved properties, including a bending strength of 49.3 Mpa, linear shrinkage of 1.5%, water solubility rate of 16.25 g/min·m2 in distilled water, and hygroscopic rate of 0.058%.

A Study on Ultra High Strength Concrete with the Domestic Materials (순수 국내재료를 사용한 초고강도 콘크리트에 관한 연구)

  • Kwon, In-Pyo;Kim, Yong-Ro;Wee, Dong-Su;Park, Chan-Hoon;Joo, Dong-Chul;Kim, Jung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.433-436
    • /
    • 2006
  • The trends of research for concrete in recent days are the high performance, high flow, ultra high strength and high durability. These are being researched with a construction company and a materials company. Anyone have to use the good quality sand, gravel, high quality chemical compound and silica fume for ultra high strength concrete as yet. This paper was researched with the domestic materials, not use the high price silica fume for the development 100MPa ultra high strength concrete with laboratory tests and mock-up test.

  • PDF

An Experimental Study for Basic Property of Ultra High-strength Concrete in a 100MPa class of Specified Concrete Strength (설계기준강도 100MPa급 초고강도 콘크리트의 기초물성에 관한 실험적 연구)

  • Gong Min-Ho;Yang Dong-Il;Jung Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.3 s.21
    • /
    • pp.123-129
    • /
    • 2006
  • In these days, as building structures are getting taller, larger, and more diversified, structural systems with more economy and more efficiency are being required and so are more efficient building materials, this study conducted a basic experiment to conclude an adequate selection of materials and to calculate an optimal mixing proportion of those materials to produce High-strength concrete in a 100MPa of specified concrete strength. And also we conducted an experiment to find out basic properties of this concrete such as slump-flow, strength.

Evaluation of Hydrogen Embrittlement of High Strength Steel for Automobiles by Small Punch Test (소형펀치시험을 이용한 자동차용 고강도강 수소취성 평가)

  • Park, Jae-Woo;Kang, Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • The hydrogen embrittlement of high strength steel for automobiles was evaluated by small punch (SP) test. The test specimens were fabricated to be 5 series, having various chemical compositions according to the processes of heat treatment and working. Hydrogen charging was electrochemically conducted for each specimen with varying of current density and charging time. It was shown that the SP energy and the maximum load decreased with increasing hydrogen charging time in every specimen. SEM investigation results for the hydrogen containing samples showed that the fracture behavior was a mixed fracture mode having 50% dimples and 50% cleavages. However, the fracture mode of specimens with charging hydrogen changed gradually to the brittle fracture mode, compared to the mode of other materials. All sizes and numbers of dimples decreased with increasing hydrogen charging time. These results indicate that hydrogen embrittlement is the major cause of fracture for high strength steels for automobiles; also, it is shown that the small punch test is a valuable test method for hydrogen embrittlement of high strength sheet steels for automobiles.

Measurement Method of Sensitivity for Hydrogen Embrittlement of High Strength Bolts (고강도 볼트의 수소취성에 대한 민감도 측정방법)

  • Ham, Jong-Oh;Kim, Bok-Gi;Lee, Sun-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • To measure the sensitivity of the hydrogen embrittlement from plated high strength bolts (SWCH18A, F11T), the bolt was stressed by a corresponding to the amount of tensile strain of 5% and 20%, and then the bolt developed a crack on the surface. The bolt that didn't have concentrated hydrogen, even though it was stressed by a corresponding the amount of tensile strain of 5% and 20%, no crack developed. However, the bolt that had concentrated hydrogen, developed cracks from the thread crest to the root. It is impossible to measure the hydrogen amount from plated high strength bolts using Hydrogen-Determinator, because of the limitation of the minimum sample size (about 1g as a mass or $5{\times}5{\times}5 mm^3$ as a volume). Therefore, the sensitivity of hydrogen embrittlement can be measured by observing the presence of cracks on the surface of plated high strength bolts which are stressed by a corresponding to the amount of tensile strain of 5% and 20%.