• Title/Summary/Keyword: high strength materials

Search Result 3,820, Processing Time 0.034 seconds

Structural Capacity of High Strength Steel Pipe Pile After Pile Driving (고강도 강관말뚝의 항타후 구조성능 분석)

  • La, SeungMin;Yoo, Hankyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6C
    • /
    • pp.251-258
    • /
    • 2011
  • Steel pipe piles have been used as various deep foundation materials for a long time. Recent increase in steel material cost has made engineers reluctant in using it even with its good quality and ease of construction. Therefore when constructing with steel pipe pile, the decision to reuse the excessive pile length that is cut off from the designed pile head elevation after pile driving can be cost saving. This has caused many constructors to reuse the pile leftovers with new piles, but the absence of quantitative structural capacity behaviors of steel pipe pile after pile driving or appropriate countermeasures and standards in reusing steel pipe pile has resulted in wrong applications, pile structural integrity problems, inappropriate limitation of reusable pile length, etc. The structural performance analysis between a new pile and a pile that has undergone working state and ultimate state stress level during pile driving was performed in this research by means of comparing the results between the dynamic pile load test, tensile load test, charpy energy test and fatigue test for high strength steel of $440N/mm^2$ yield strength. Test results show that under working load conditions the yield strength variation is less than 2% and for ultimate load conditions the variation is less than 5% for maximum total blow count of 3000. The results have been statistically analyzed to check the sensitivity of each factors involved. From the test results, reusability of steel pipe pile lies not in the main pipe yield strength deviation but in the reduction of absorb energy, strength changes and quality control at the welded section, shape deformation and local buckling during pile driving.

Compressive Strength Correlation of Very-Early-Strength Dry-Mix Shotcrete on Test Method (측정방법에 따른 속경성 건식 숏크리트 압축강도의 상관관계)

  • Yun, Kyong-Ku;Choi, Sung-Yong;Kim, Jin-Woung;Kil, Yong-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3988-3997
    • /
    • 2010
  • Shotcrete was a mortar or concrete that is pneumatically projected at high velocity onto a subject. It has been applied for tunneling, underground big-spaces, slope stabilization. Shotcrete is increasing use in structure repair. The dry-mix shotcrete require a smaller equipment, easy maintenance, possible of very-earlystrength materials than wet-mix shotcrete, which make this process attractive and economic for structural repairs. It is common practice core compressive strength to the dry-mix shotcrete quality control. This test is very difficult estimating eraly-strength of Very-Early-Strength Dry-Mix Shotcrete. The purpose of this research was to analyze the correlation of test results among cube test, core test, pullout test and maturity. The correlationship analysis of test results among cube test, core test, pullout test and maturity showed more than 90%.

The Strength and Environmental Friendly Characteristics of Non-chemical Accelerating Shotcrete (비약액계 급결성 숏크리트재의 강도특성과 친환경성)

  • Chun, Byungsik;Park, Dukhyum;Kang, Hyoungnam;Do, Jongnam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.29-36
    • /
    • 2008
  • The shotcrete is a NATM technique as a major tunnel support for ground stability after tunnel excavation. Instead of a general concrete lining method, it is a trend for curtail of construction periods and reduction of construction expenses that required to use of the permanent shotcrete lining. This high-strength shotcrete is required to use as a permanent shotcrete lining. This brought out the solution of environmental pollution and harmfulness to human. Accordingly, in this study specimens for strength measurement were made to develop shotcrete possible to develop materials in early with cement mineral accelerator as NATM method construction. It was compared with existing shotcrete material, unconfined compression test, flexural strength test, antiwashout underwater test were experimented. The fish poison test was experimented to evaluate an influence of environment. As a results of the test, unconfined compressive strength and flexural strength were equivalent with 28-curing day strength of existing material. An antiwashout of research subject material was revealed excellently in antiwashout Underwater test. As a results of the fish poison, an evaluation research subject material was founded more environmentally friendly than existing shotcrete.

  • PDF

Investigation of flexural strength and cytotoxicity of acrylic resin copolymers by using different polymerization methods

  • Sahin, Onur;Ozdemir, Ali Kemal;Turgut, Mehmet;Boztug, Ali;Sumer, Zeynep
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.98-107
    • /
    • 2015
  • PURPOSE. The aim of this study was to appraise the some mechanical properties of polymethyl methacrylate based denture base resin polymerized by copolymerization mechanism, and to investigate the cytotoxic effect of these copolymer resins. MATERIALS AND METHODS. 2-hydroxyethyl methacrylate (HEMA) and isobutyl methacrylate (IBMA) were added to monomers of conventional heat polymerized and injection-molded poly methyl methacrylate (PMMA) resin contents of 2%, 3%, and 5% by volume and polymerization was carried out. Three-point bending test was performed to detect flexural strength and the elasticity modulus of the resins. To determine the statistical differences between the study groups, the Kruskall-Wallis test was performed. Then pairwise comparisons were performed between significant groups by Mann-Whitney U test. Agar-overlay test was performed to determine cytotoxic effect of copolymer resins. Chemical analysis was determined by FTIR spectrum. RESULTS. Synthesis of the copolymer was approved by FTIR spectroscopy. Within the conventional heat-polymerized group maximum transverse strength had been seen in the HEMA 2% concentration; however, when the concentration ratio increased, the strength decreased. In the injection-molded group, maximum transverse strength had been seen in the IBMA 2% concentration; also as the concentration ratio increased, the strength decreased. Only IBMA showed no cytotoxic effect at low concentrations when both two polymerization methods applied while HEMA showed cytotoxic effect in the injection-molded resins. CONCLUSION. Within the limitations of this study, it may be concluded that IBMA and HEMA may be used in low concentration and at high temperature to obtain non-cytotoxic and durable copolymer structure.

The Study on the Strength Properties of High Volume Fly-Ash Concrete (플라이애시를 다량 사용한 콘크리트의 강도특성에 관한 연구)

  • Paik, Min-Su;Lee, Young-Do;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.4
    • /
    • pp.169-176
    • /
    • 2002
  • To study of binder and fine aggregate a lot of replacement fly-ash concrete, initial characteristics, standard environment of curing temperature $20^{\circ}C$, hot-weather environment, cold weather environment of curing temperature $5^{\circ}C$. Flash concrete tested slump, air contest, setting and Hardening concrete valuated setting period of form, day of age 3, 7, 28 compression strength in sealing curing. Underwater curing specimen compression strength of age 3. 7, 28day used strength change accordingly fly-ash concrete curing temperature. Purpose of study is consultation materials in field that variety of fly-ash replacement concrete mix proportion comparison and valuation. (1) Setting test result, fly-ash ratio of replacement higher delay totting time. Same volume of fly-ash ratio of replacement is lower fly-ash ratio of replacement fine aggregate delay setting time. Setting test in curing temperature $35^{\circ}C$ over twice fast setting in curing temperature $20^{\circ}C$ and all specimen setting delay in curing temperature $5^{\circ}C$. F40 specimen end of setting about 30 time. (2) Experiment result age 28day compression strength more fisher plan concrete then standard environment in curing temperature $20^{\circ}C$, cold weather environment in curing temperature $5^{\circ}C$, most strength F43 is hot-weather environment in curing temperature $35^{\circ}C$ replacement binder 25%, fine aggregate 15%. (3) Hot-weather environment replacement a mount of fly-ash is a same of plan concrete setting period of form. Age 28day compression strength replacement a mount of fly-ash more hot-weather concrete then plan concrete.

Evaluating flexural strength of concrete with steel fibre by using machine learning techniques

  • Sharma, Nitisha;Thakur, Mohindra S.;Upadhya, Ankita;Sihag, Parveen
    • Composite Materials and Engineering
    • /
    • v.3 no.3
    • /
    • pp.201-220
    • /
    • 2021
  • In this study, potential of three machine learning techniques i.e., M5P, Support vector machines and Gaussian processes were evaluated to find the best algorithm for the prediction of flexural strength of concrete mix with steel fibre. The study comprises the comparison of results obtained from above-said techniques for given dataset. The dataset consists of 124 observations from past research studies and this dataset is randomly divided into two subsets namely training and testing datasets with (70-30)% proportion by weight. Cement, fine aggregates, coarse aggregates, water, super plasticizer/ high-range water reducer, steel fibre, fibre length and curing days were taken as input parameters whereas flexural strength of the concrete mix was taken as the output parameter. Performance of the techniques was checked by statistic evaluation parameters. Results show that the Gaussian process technique works better than other techniques with its minimum error bandwidth. Statistical analysis shows that the Gaussian process predicts better results with higher coefficient of correlation value (0.9138) and minimum mean absolute error (1.2954) and Root mean square error value (1.9672). Sensitivity analysis proves that steel fibre is the significant parameter among other parameters to predict the flexural strength of concrete mix. According to the shape of the fibre, the mixed type performs better for this data than the hooked shape of the steel fibre, which has a higher CC of 0.9649, which shows that the shape of fibers do effect the flexural strength of the concrete. However, the intricacy of the mixed fibres needs further investigations. For future mixes, the most favorable range for the increase in flexural strength of concrete mix found to be (1-3)%.

Change of phase transformation and bond strength of Y-TZP with various hydrofluoric acid etching

  • Mi-Kyung Yu;Eun-Jin Oh;Myung-Jin Lim;Kwang-Won Lee
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.4
    • /
    • pp.54.1-54.10
    • /
    • 2021
  • Objectives: The purpose of this study was to quantify phase transformation after hydrofluoric acid (HF) etching at various concentrations on the surface of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP), and to evaluate changes in bonding strength before and after thermal cycling. Materials and Methods: A group whose Y-TZP surface was treated with tribochemical silica abrasion (TS) was used as the control. Y-TZP specimens from each experimental group were etched with 5%, 10%, 20%, and 40% HF solutions at room temperature for 10 minutes. First, to quantify the phase transformation, Y-TZP specimens (n = 5) treated with TS, 5%, 10%, 20% and 40% HF solutions were subjected to X-ray diffraction. Second, to evaluate the change in bond strength before and after thermal cycling, zirconia primer and MDP-containing resin cement were sequentially applied to the Y-TZP specimen. After 5,000 thermal cycles for half of the Y-TZP specimens, shear bond strength was measured for all experimental groups (n = 10). Results: The monoclinic phase content in the 40% HF-treated group was higher than that of the 5%, 10%, and 20% HF-treated groups, but lower than that of TS-treated group (p < 0.05). The 40% HF-treated group showed significantly higher bonding strength than the TS, 5%, and 10% HF-treated groups, even after thermal cycling (p < 0.05). Conclusions: Through this experiment, the group treated with SiO2 containing air-borne abrasion on the Y-TZP surface showed higher phase transformation and higher reduction in bonding strength after thermal cycling compared to the group treated with high concentration HF.

Mechanical Properties and Wear Performance of the Al7075 Composites Reinforced with Bimodal Sized SiC Particles (이종입자 강화 SiC/Al7075 금속복합재료의 압축특성 및 마모특성 연구)

  • Lee, Donghyun;Cho, Seungchan;Kim, Yangdo;Lee, Sang-Kwan;Lee, Sang-Bok;Jo, Ilguk
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.310-315
    • /
    • 2017
  • In this study, we have investigated microstructure, mechanical properties and wear characteristic of aluminum metal matrix composites with a high volume fraction and uniformly dispersed SiC particles which produced by a liquid pressing process. The volume fraction of bimodal SiC/Al7075 composite was 12% higher than that of the monomodal SiC/Al7075 composite and a compressive strength is increased about 200 MPa. As a result of the abrasion test, the wear width and depth of the bimodal SiC/Al7075 composite were $285.1{\mu}m$ and $0.45{\mu}m$, respectively. The coefficient of friction of bimodal SiC/Al7075 was 0.16.

Standardization of the Important Test Parameters in the Solder Ball Shear Test for Evaluation of the Mechanical Joint Strength

  • Kim J. W.;Koo J. M.;Lee W. B.;Moon W. C.;Moon J. H.;Yeon Y. M.;Shur C. C.;Jung S. B.
    • International Journal of Korean Welding Society
    • /
    • v.5 no.1
    • /
    • pp.15-28
    • /
    • 2005
  • The ball shear test was investigated in terms of the effects of test parameters, i.e., shear height and shear speed, with an experimental and non-linear finite element analysis for evaluating the solder joint integrity of area array packages. Two representative Pb-free solder compositions were examined in this work: Sn-3.5Ag-0.75Cu and In-48Sn. The substrate was a common SMD type with solder bond pad openings of 460 $\mu$m in diameter. The microstructural investigations were carried out using SEM, and the IMCs were identified with EDS. Shear tests were conducted with the two varying test parameters. It could be observed that increasing shear height, at fixed shear speed, has the effect of decreasing shear force for both Sn-3.5Ag-0.75Cu and In-48Sn solder joints, while the shear force increased with increasing shear speed at fixed shear height. Too high shear height could cause some undesirable effects on the test results such as unexpected high standard deviation values or shear tip sliding from the solder ball. The low shear height conditions were favorable for screening the type of brittle interfacial fractures or the degraded layers in the interfaces. The shear speed conditions were discussed with the stress analyses of the solder ball, and we cannot find any conspicuous finding which is related to optimum shear speed from the stress analyses.

  • PDF

High Conductivity of Transparent SWNT Films on PET by Ionic Doping

  • Min, Hyung-Seob;Kim, Sang-sig;Choi, Won-Kook;Lee, Jeon-Kook
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.65-65
    • /
    • 2011
  • Single-well carbon nanotubes (SWNT) have been proposed as a promising candidate for various applications owing to their excellent properties. In particular, their fascinating electrical and mechanical properties could provide a new area for the development of advanced engineering materials. A transparent conductive thin film (TCF) has increased for applications such as liquid crystal displays, touch panels, and flexible displays. Indium tin oxide (ITO) thin films, which have been traditionally used as the TCFs, have a serious obstacle in TCFs applications. SWNTs are the most appropriate materials for conductive films for displays due to their excellent high mechanical strength and electrical conductivity. But, a bundle of CNTs has different electrical properties than their individual counterparts. In this work, the fabrication by the spraying process of transparent SWNT films and reduction of its sheet resistance on PET substrates is researched. Arc-discharge SWNTs were dispersed in deionized water by adding sodum dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWNT was spray-coated on PET substrate and dried on a hotplate at $100^{\circ}C$. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then treated with ionic doping treatment, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. Results, we show that 97 ${\Omega}$/> sheet resistance can be achieved with 81% transmittance at the wavelength of 550 nm. The changes in electrical and optical conductivity of SWNT film before and after ionic doping treatments were discussed.

  • PDF