• Title/Summary/Keyword: high strength materials

Search Result 3,818, Processing Time 0.035 seconds

Plasma etching behavior of RE-Si-Al-O glass (RE: Y, La, Gd)

  • Lee, Jeong-Gi;Hwang, Seong-Jin;Lee, Seong-Min;Kim, Hyeong-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.49.1-49.1
    • /
    • 2010
  • The particle generation during the plasma enhanced process is highly considered as serious problem in the semiconductor manufacturing industry. The material for the plasma processing chamber requires the plasma etching characteristics which are homogeneously etched surface and low plasma etching depth for preventing particulate contamination and high durability. We found that the materials without grain boundaries can prevent the particle generation. Therefore, the amorphous material with the low plasma etching rate may be the best candidate for the plasma processing chamber instead of the polycrystalline materials such as yttria and alumina. Three glasses based on $SiO_2$ and $Al_2O_3$ were prepared with various rare-earth elements (Gd, Y and La) which are same content in the glass. The glasses were plasma etched in the same condition and their plasma etching rate was compared including reference materials such as Si-wafer, quartz, yttria and alumina. The mechanical and thermal properties of the glasses were highly related with cationic field strength (CFS) of the rare-earth elements. We assumed that the plasma etching resistance may highly contributed by the thermal properties of the fluorine byproducts generated during the plasma exposure and it is expected that the Gd containing glass may have the highest plasma etching resistance due to the highest sublimation temperature of $GdF_3$ among three rare-earth elements (Gd, Y and La). However, it is found that the plasma etching results is highly related with the mechanical property of the glasses which indicates the cationic field strength. From the result, we conclude that the glass structure should be analyzed and the plasma etching test should be conducted with different condition in the future to understand the plasma etching behavior of the glasses perfectly.

  • PDF

Mechanical Properties and Castabilities of Al-12Mg-5.5Zn-xSi Alloys

  • Kim, Jeong-Min;Sung, Ki-Dug;Jun, Joong-Hwan;Kim, Ki-Tae;Jung, Woon-Jae
    • Journal of Korea Foundry Society
    • /
    • v.24 no.6
    • /
    • pp.340-346
    • /
    • 2004
  • The plan for obtaining a good combination of strength and castability appeared feasible and the following observations were made. 1. In Al-12Mg-6.6Zn-xSi alloys, more primary $Mg_2Si$ phase formed with reduced $Al_3Mg_2$ phase, as Si content is necessary for an effective solution heat treatment because the solidus temperature is very low silicon contents. 2. A high tensile strength could be obtained in the heat-treated Al-12Mg-5.5Zn-5Si alloy attributed in the heat-treated Al-12Mg-5.5Zn-5Si alloy attributes to fine $MgZn_2$ particles that precipitated uniformly in the matrix. 3. Al-12Mg-5.5Zn-Si alloys showed excellent casting capabilities such as hot cracking resistance and fluidity compared to the reference commercial alloys. 4. The wear resistance of Al-12Mg-5.5Zn-5Si alloy was superior to that of A7075 alloy, and even higher resistance is expected if the morphology and size of primary $Mg_2Si$ phase is carefully controlled.

Characteristics of Sulfur-Solidified Materials by the Physical Properties of Coal Bottom Ash (석탄 바닥재의 물리적 성질에 따른 유황 고형화 성형물의 특성)

  • Hong, Bumui;Choi, Changsik;Jang, Eunsuk;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.58-65
    • /
    • 2014
  • In this work, we constructed the sulfur-solidified materials using coal bottom ash from four thermal power stations in Korea and investigated their practical data for the production of industrial construction compounds. To manufacture the sulfur-solidified materials, we used a continuous mixer with the uniaxial screw-type. Also, coal bottom ash was used as a fine aggregate below 1.2 mm because of the operation characteristics for the continuous mixer. When the sulfur-solidified materials were produced with diverse sulfur concentrations (15, 20, 25, 30 wt%), compressive strength properties were analyzed. In addition, when the coal bottom ash was used with a high calcium oxide content, crack was found in the test product and pH of submerged liquid was above 12. These experimental results could be effectively applied to the recycling technology of coal bottom ash.

Effect of Microstructure on the Strain Aging Properties of API X70 Pipeline Steels (API X70 라인파이프 강재의 변형 시효 특성에 미치는 미세조직의 영향)

  • Lee, Seung-Wan;Im, In-Hyuk;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.702-708
    • /
    • 2018
  • This study deals with the effect of microstructure factors on the strain aging properties of API X70 pipeline steels with different microstructure fractions and grain sizes. The grain size and microstructure fraction of the API pipeline steels are analyzed by optical and scanning electron microscopy and electron backscatter diffraction analysis. Tensile tests before and after 1 % pre-strain and thermal aging treatment are conducted to simulate pipe forming and coating processes. All the steels are composed mostly of polygonal ferrite, acicular ferrite, granular bainite, and bainitic ferrite. After 1 % pre-strain and thermal aging treatment, the tensile test results reveal that yield strength, tensile strength and yield ratio increase, while uniform elongation decreases with an increasing thermal aging temperature. The increment of yield and tensile strengths are affected by the fraction of bainitic ferrite with high dislocation density because the mobility of dislocations is inhibited by interaction between interstitial atoms and dislocations in bainitic ferrite. On the other hand, the variation of yield ratio and uniform elongation is the smallest in the steel with the largest grain size because of the decrease in the grain boundary area for dislocation pile-ups and the presence of many dislocations inside large grains after 1 % pre-strain.

Strength Prediction of Kraft Paperboard under Combined Stress (조합하중을 받는 Kraft 판지의 강도예측)

  • Lim, Won-Kyun;Jeong, Woo-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • Based on the form of the Tsai-Hill criterion, a new failure criterion for anisotropic material subjected to combined stress is developed and demonstrated. It is capable of accurately calculating the strength of anisotropic materials. The generality and accuracy of the present failure criterion are illustrated by examination through the use of Kraft paperboards under various loading conditions. Compared to the Tsai-Hill theory, which is much too conservative at high levels of shear stress, the present criterion has a good agreement with the experimental data. It also has the ability to calculate the strength more simply, compared to the Tan-Cheng theory.

A Study on fatigue Strength in the Friction Welded Joints of HSS-Co to SM55C Carbon Steel(I) (HSS-Co와 SM55C 이종 마찰용접재의 피로강도에 관한 연구(1))

  • 서창민;서덕영;이동재
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.918-928
    • /
    • 1995
  • This paper deals with the various mechanical properties and fatigue strength in the FRW1 (friction welded interface) of high speed steel (HSS-Co) to SM55C through the tensile test, hardness test and fatigue test. The data of FRW specimens are also compared with those of the base materials (HSS-Co and SM55C steel). Three kinds of specimens used in this study are the friction welded joints, HSS-Co and SM55C carbon steel with circumferential notch, saw notch and smooth, respectively. It is confirmed that the applied welding conditions are optimum methods in order to minimize the heat affected zone (HAZ) and hardness distribution at the HAZ. The fatigue strengths at N = 10$^{6}$ cycles of smooth, circumferential notch and saw notch specimens in the FRW joints are about 299.2 MPa, 123.8 MPa and 247.5 MPA, respectively. The fatigue strength of the friction welded joints is almost equal to that of the SM55C carbon steel in the optimum welding conditions. The fatigue cracks initiated at the welded zone are propagated along the side of SM55C steel.

A Study on Fatigue Characteristics for Design Automation of TS-Type Spot Welded Lap Joint (TS형 박강판 용접 구조물의 자동화설계를 위한 피로특성에 관한 연구)

  • Yeb, Baek-Seung;Ho, Bae-Dong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.290-296
    • /
    • 2012
  • Cold-rolled carbon steel sheets are commonly used in railroad car or commercial vehicles such as the automobile. These are mainly fabricated by spot welding which is a kind of electric resistance welding. But fatigue strength of spot welding joint is lower than that of base metal due to high stress concentration at nugget edge of the spot welded part. And fatigue strength of them is especially influenced by not only geometrical and mechanical factors but also welding conditions of the spot welded joint. So for fatigue design of gas welded joints such as TS-type joints, it is necessary to obtain design information on stress distribution at the weldment as well as fatigue strength of spot welded joints. And also, the influence of the geometrical parameters of spot welded joints on stress distribution and fatigue strength must be evaluated. And analysis approach for fatigue test using design of experiment are evaluated optimum factor in TS-type welded joint and geometrical parameters of materials. Using these results, that factors applied to fundamental information for automation of fatigue design.

Experimental bond behavior of hybrid rods for concrete reinforcement

  • Nanni, Antonio;Nenninger, Jeremy S.;Ash, Kenneth D.;Liu, Judy
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.339-353
    • /
    • 1997
  • Fiber reinforced plastic (FRP) rods provide certain benefits over steel as concrete reinforcement, such as corrosion resistance, magnetic and electrical insulation, light weight, and high strength. FRP composites can be combined with a steel core to form hybrid reinforcing rods that take advantage of properties of both materials. The objective of this study was to characterize the bond behavior of hybrid FRP rods made with braided epoxy-impregnated aramid or poly-vinyl alcohol FRP skins. Eleven rod types were tested using two concrete strengths. Specific topics examined were bond strength, slip, and type of failure in concentric pull-out tests from concrete cubes. From analysis of identical pull-out tests on both hybrid and steel rods, information on relative bond strength and behavior were obtained. It is concluded that strength is similar but slip in hybrid rods is much higher. Hybrid rods failed either by pull-out or splitting the concrete block (with or without yielding of the steel core). Experimental data showed consistency with similar test results presented in the literature.

A Study on Reinforced Concrete Beams with Perforation (철근콘크리트 유공보에 관한 연구)

  • Park, Kyong-Ho
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.7-14
    • /
    • 2001
  • In building structure, the story height can be minimized by providing openings in beams which serves for the utility equipments passing through. The dead space in false ceiling thus put to economical use in the form of a substantial reduction in materials and construction cost. In the case of steel structure, there is no critical risk in the structural strength because of reinforcing methods of stiffness and steel plate but in the case of reinforced concrete structure, proper provision should be made in designing these openings, otherwise there is a risk that these opening will possibly weaken the structural strength of the building frame to a critical degree. In this paper, for the numerical analysis of the reinforced concrete beams with circular opening in the web, expecting stress concentration of the circular opening, reinforcing methods were studied. Twenty test pieces with each different reinforcing methods were tested and their resisting forces were defined. From the numerical analysis and test results, the followings were founded;(1)high shear stress distributed around the openings reduce the shearing strength, (2)from the numerical analysis, the maximum tensile stress occurred at opening nodes 1,7, these phenomena were agreed with the test results, (3)reinforcing method around openings have to carried out for stopping diagonal cracks, and (4)both, by steel plate, and wire mesh, are effective reinforcing methods.

  • PDF

A Study on Material Properties of Composite Panel for Impact·Blast Resistance (방호·방폭 보강용 복합패널의 재료특성에 관한 연구)

  • Kim, Woonhak;Kang, Seokwon
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.4
    • /
    • pp.373-380
    • /
    • 2016
  • In order to develop composite fiber panels that can maximize the protection and blast resistance of the existing structures by improving lightweight, high-strength and fireproof performances of the single layer material of precast panels, the basic properties of the inner and outer covers that are mixed with aramid fibers (AF) and polyester fibers (PF) were evaluated in this study. Also, a basic study was performed on the performance of composite fiber panels by testing Nano-sized composite materials that are lightweight and excellent in fire resistance for their compressive strength, bending strength and tensile strength.