• Title/Summary/Keyword: high strength materials

Search Result 3,818, Processing Time 0.037 seconds

Analysis of the High Formability of Automotive Steel Sheets by the Surface Texturing Effect (자동차용 강판의 표면 텍스처링 효과에 따른 고성형성 연구)

  • Yoon, Seung-Chae;Lyo, In-Woong;Cho, Min-Haeng
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.8-12
    • /
    • 2012
  • This study aims to analyze the formability property of surface texturing processed automotive steel sheet for improving the sheet forming property. In the paper, the effect of cavities fabricated using the laser surface texturing technique on automotive high strength steel sheets was studied. The frictional behavior of the sheet drawing is a function of interface parameters such as sheet surface roughness, holding force, contact pressure, etc. For these reasons, automotive steel researchers want to optimize the surface topography of automotive steel sheets in order to enhance the formability. Therefore, this study presents the behavior of deformation of a laser surface texturing steel sheet by considering the frictional operation during the deep drawing process.

Influence of Plasticizers on Mechanical, Thermal, and Migration Properties of Poly(Lactic Acid)/Zeolite Composites

  • Qin, Pei;Jung, Hyun-Mo;Choi, Dong-Soo;Hwang, Sung-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.2_1
    • /
    • pp.79-89
    • /
    • 2021
  • Poly(lactic acid) (PLA) is considered as one of the most promising bio-based polymers due to its high strength, high modulus, good processability, transparency after processing, and commercial availability. This study aimed to investigate the mechanical, thermal, and migration properties of poly(lactic acid)/zeolite (10 phr) composites prepared with various biocompatible plasticizers, such as triethyl citrate(TEC), tributyl citrate(TBC), and poly(ethylene glycol)(PEG400), through differential scanning calorimetry(DSC), thermo-gravimetric analysis(TGA) and standard tensile testing. The incorporation of PEG400 significantly increased the elongation at break, and DSC results showed that the addition of plasticizers drastically decreased the Tg of PLA/zeolite composites and improved the melt flow and processability. Besides, it was found from TGA results that PLA/zeolites composites plasticized by TEC and TBC were more easily to be thermally degraded than the composites plasticized by PEG400.

Experimental and microstructural evaluation on mechanical properties of sisal fibre reinforced bio-composites

  • Kumar, B. Ravi;Hariharan, S.S.
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.299-306
    • /
    • 2019
  • The natural fibre composites are termed as bio-composites. They have shown a promising replacement to the current carbon/glass fibre reinforced composites as environmental friendly materials in specific applications. Natural fibre reinforced composites are potential materials for various engineering applications in automobile, railways, building and Aerospace industry. The natural fibre selected to fabricate the composite material is plant-based fibre e.g., sisal fibre. Sisal fibre is a suitable reinforcement for use in composites on account of its low density, high specific strength, and high hardness. Epoxy is a thermosetting polymer which is used as a resin in natural fibre reinforced composites. Hand lay-up technique was used to fabricate the composites by reinforcing sisal fibres into the epoxy matrix. Composites were prepared with the unidirectional alignment of sisal fibres. Test specimens with different fibre orientations were prepared. The fabricated composites were tested for mechanical properties. Impact test, tensile test, flexural test, hardness test, compression test, and thermal test of composites had been conducted to assess its suitability in industrial applications. Scanning electron microscopy (SEM) test revealed the microstructural information of the fractured surface of composites.

Thermally Crosslinked Polyimide Binders for Si-alloy Anodes in Li-ion Batteries

  • Chang, Hyeong-Seok;Ji, Sang-Gu;Rho, Miso;Lee, Byoung-Min;Kim, Sung-Soo;Choi, Jae-Hak
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.339-346
    • /
    • 2022
  • Silicon (Si) has attracted considerable attention due to its high theoretical capacity compared to conventional graphite anode materials. However, Si-based anode materials suffer from rapid capacity loss due to mechanical failure caused by large volume change during cycling. To alleviate this phenomenon, crosslinked polymeric binders with strong interactions are highly desirable to ensure the electrode integrity. In this study, thermally crosslinked polyimide binders were used for Si-alloy anodes in Li-ion batteries. The crosslinked polyimide binder was found to have high adhesion strength, resulting in enhanced electrode integrity during cycling. Therefore, the Si-alloy anodes with crosslinked polyimide binder provide enhanced electrochemical performance, such as Coulombic efficiency, capacity retention, and cycle stability.

A Study on the Machinability Characteristics of ADI Materials for the Drilling Conditions (ADI재료의 드릴가공시 가공조건에 따른 절삭특성에 관한 연구)

  • Cho, Gyu-Jae;Jeon, Eon-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.36-44
    • /
    • 1996
  • Drilling tests were carried out austempered ductile cast iron(ADI) to clarify the factors influencing the drilling characteristics of ADI material. The machinability of material was evaluated using high speed steel drill and cobalt contained drill of 6mm diameter. The spheroidal graphite cast iron materials were austemized at 900 .deg. C for 1 hour and then wear was kept at 375 .deg. C for 2 hours. Austempered ductile cast iron contains a great deal of retained austenite which contribustes to an improvement of impact strength. In this paper, machinability of ADI was invastigated by drilling experimentation. The results obtained are as follows:a) Flank wear incresses logarithmically with the increases of cutting time and proportionally with the increases of cutting force. b) Drilling hole number of about 2 times can be educed more step feed than ordinary feed due to the high hardness of ADI material and hardness increasing ascribed to the martensite of retained austenite.

  • PDF

Effect of Milling Time on Pore Size and Distribution of Ti-Nb-Zr Biomaterials with Space Holder Consolidated by Spark Plasma Sintering

  • Kim, Dong-Gun;Woo, Kee-Do;Kang, Dong-Soo;Lee, Tack
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.111-115
    • /
    • 2014
  • Titanium and its alloys are useful for implant materials. In this study, porous Ti-Nb-Zr biomaterials were successfully synthesized by powder metallurgy using a $NH_4HCO_3$ as space holder and $TiH_2$ as foaming agent. Consolidation of powder was accomplished by spark plasma sintering process(SPS) at $850^{\circ}C$ under 30 MPa condition. The effect of high energy milling time on pore size and distribution in Ti-Nb-Zr alloys with space holder($NH_4HCO_3$) was investigated by optical microscope(OM), scanning electron microscope(SEM) & energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD). Microstructure observation revealed that, a lot of pores were uniformly distributed in the Ti-Nb-Zr alloys as size of about $30-100{\mu}m$ using mixed powder and milled powders. In addition, the pore ratio was found to be about 5-20% by image analysis, using an image analyzer(Image Pro Plus). Furthermore, the physical properties of specimens were improved with increasing milling time as results of hardness, relative density, compressive strength and Young's modulus. Particularly Young's modulus of the sintered alloy using 4h milled powder reached 52 GPa which is similar to bone elastic modulus.

Experimental study on deformation of concrete for shotcrete use in high geothermal tunnel environments

  • Cui, Shengai;Liu, Pin;Wang, Xuewei;Cao, Yibin;Ye, Yuezhong
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.443-449
    • /
    • 2017
  • Taking high geothermal tunnels as background, the deformation of concrete for shotcrete use was studied by simulating hot-humid and hot-dry environments in a laboratory. The research is made up by two parts, one is the influence of two kinds of high geothermal environments on the deformation of shotcrete, and the other is the shrinkage inhibited effect of fiber materials (steel fibers, polypropylene fibers, and the mixture of both) on the concrete in hot-dry environments. The research results show that: (1) in hot and humid environments, wet expansion and thermal expansion happened on concrete, but the deformation is smooth throughout the whole curing age. (2) In hot and dry environments, the concrete suffers from shrinkage. The deformation obeys linear relationship with the natural logarithm of curing age in the first 28 days, and it becomes stable after the $28^{th}$ day. (3) The shrinkage of concrete in a hot and dry environment can be inhibited by adding fiber materials especially steel fibers, and it also obeys linear relationship with the natural logarithm of curing age before it becomes stable. However, compared with no-fiber condition, it takes 14 days, half of 28 days, to make the shrinkage become stable, and the shrinkage ratio of concrete at 180-day age decreases by 63.2% as well. (4) According to submicroscopic and microscopic analysis, there is great bond strength at the interface between steel fiber and concrete. The fiber meshes are formed in concrete by disorderly distributed fibers, which not only can effectively restrain the shrinkage, but also prevent the micro and macro cracks from extending.

Experimental Study on the Use of High-Volume Fly Ash and Basalt Fiber as Emergency Repair Materials for Slope Stabilization: An Analysis of Basic Quality Characteristics (비탈면 긴급 복구를 위한 하이볼륨 플라이애시 및 현무암 섬유 보강 보수재료의 기초 품질 특성에 대한 실험적 연구)

  • Doo-Won Lee;Il-Young Jang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.111-120
    • /
    • 2024
  • This paper presents a study aimed at developing repair materials for emergency slope stabilization after disasters such as floods. The research assessed how different mix ratios of fly ash and reinforcement with basalt fibers affect the basic quality properties of mortars. Optimal amounts of fly ash were selected based on these properties, and appropriate amounts of chemical admixtures and thickeners were determined to enhance the quality attributed to the basalt fiber mixture. Notably, high-volume fly ash reduced the need for high-performance water reducers and improved workability, known benefits that also helped mitigate fiber ball issues in conjunction with the effects of thickeners. The experimental results indicated that the developed repair materials could potentially be used for emergency repairs, with a focus on initial age strength. This research aims to provide foundational data for repair materials used in future emergency slope stabilizations.

High Temperature Behavior of Liquid Diffusion Bonded Joints of Mar-M-247 Alloy (Mar-M-247 합금의 액상확산접합부 고온 특성 거동)

  • Son, Myungsook;Ahn, Jongkee;Lee, Dongyeop;Kim, Jungi;Kang, Sukchul;Kim, Hongkyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.248-250
    • /
    • 2017
  • The Mar-M-247 alloy is one of the most widely used materials for gas turbine components in aerospace filed and it shows excellent high temperature strength properties. Hot section parts, such as turbine nozzle and blade, are difficult to manufacture because of their complicated shape. So, the joining process usually applies to them. In this study, the high-temperature behavior of Mar-M-247 alloy at liquid diffusion bonding was investigated. Thus, we performed the diffusion bonding at $1,121^{\circ}C$ for 7 minutes, and observed changes in high temperature strength. As a result, the strength of the bonded specimens decreased by about 70% at $649^{\circ}C$, 60% at $825^{\circ}C$, and 45% at $1,000^{\circ}C$ compared to the base metal. As a result of observing the strength change with bonding time, the specimen bonded for 720 minutes showed a similar strength with the base metal at $649^{\circ}C$. Inferring this result, the joint is considered to be the one-body part.

  • PDF

A Study for In-situ Application of High Strength Antiwashout Underwater Concrete (고장도용 수중불분리성 콘크리트의 현장적용을 위한 연구)

  • 문한영;송용규;이승훈;정재홍
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.336-345
    • /
    • 2001
  • The construction of underwater structures has been increased, but underwater concrete hassome problems of quality deterioration and contamination around in-situ of civil and architecture; therefore, new materials and methods for them are demanded. In this paper in-situ application of underwater antiwashout concrete which is manufactured for trio purpose of not only decreasing suspended solids and the heat of hydration but also increasing long term strength was studied. In the case of mock-up test(Ⅰ), when underwater antiwashout concrete, whose slump flow was 58 cm, was placed in the mock-up test at a speed of 24 ㎥/hr, it took about a minute to flow to the side wall, and the surface was maintained at horizontal level. In this case, compressive strength of the core specimens in each section was higher than the standard design compressive strength of 240 kgf/㎠. In the case of mock-up test(II), pH value and suspended solids of high strength underwater antiwashout concrete were 10.0∼11.0 and 51 mg/ℓ at 30 minutes later, initial and final setting time were about 30, 37 hr, and the slump flow of that was 53$\pm$2 cm. In the placement at a speed of 27 ㎥/hr, there was no large difference in flowing velocity, with or without reinforcement and flowing slope was maintained at horizontal level. In this case, compressive strength and elastic modulus of the core specimens somewhat decreased as flowing distance was far : however, those of central area showed the highest value.