• Title/Summary/Keyword: high strength materials

Search Result 3,818, Processing Time 0.034 seconds

Evaluation of Mechanical Properties for Magnesium Sheet Forming by Tension and Compression Tests (마그네슘 판재성형을 위한 인장 및 압축실험을 통한 기계적 물성 평가)

  • Oh, S. W.;Choo, D. K.;Lee, J. H.;Kang, C. G.
    • Transactions of Materials Processing
    • /
    • v.14 no.7 s.79
    • /
    • pp.635-641
    • /
    • 2005
  • The crystal structure of magnesium was hexagonal close-packed (HCP), so its formability was poor at room temperature. But formability was improved in high temperature with increasing of the slip planes. Purpose of this paper was to know about the mechanical properties of magnesium alloy (AZ31B), before warm and hot forming process. The mechanical properties were defined by the tension and compression tests in various temperature and strain-rate. As the temperature was increased, yield·ultimate strength, K-value, work hardening exponent (n) and anisotropy factor (R) were decreased. But strain rate sensitivity (m) was increased. As strain-rate increased, yield·ultimate strength, K-value, and work hardening exponent (n) were increased. Also, microstructures of grains fined away at high strain-rate. These results would be used in simulations and manufacturing factor fer warm and hot forming process.

Multi Stage Simulations for Autobody Member Part (자동차 멤버 부품의 다공정 성형해석)

  • Park C.D.;Kim B.M.;Chung W.J.
    • Transactions of Materials Processing
    • /
    • v.15 no.4 s.85
    • /
    • pp.281-288
    • /
    • 2006
  • Most of automobile member parts experience severe springback problems because of their complicated shape and high yielding strength. Now it becomes imperative to develop an effective method to resolve these problems. However, there remain several obstacles to get accurate estimation of dimensional shape. Especially the effective algorithms to simulate sheet metal forming processes including drawing, trimming, flanging and springback is demanded for the multi stage simulation of automobile member parts. In this study, for the purpose of accurate springback calculation, a simulation program which is robust in springback analysis is developed. Favorable enhancement in computation time for springback analysis by using latest equation solving technique and robust solution convergence by continuation method are achieved with the program. In analysis, the multi processes of rear side member are simulated to verify the system. For the evaluation of springback accuracy practically, all conditions including boundary conditions for springback analysis and inspection conditions for dimensional accuracy are applied. The springback results of simulations show good agreement with the experiments.

Local Softening of Hot-stamped Parts using a Laser Heat Treatment (레이저 열처리를 이용한 핫스탬핑 부품의 국부 연화 기술 연구)

  • Kim, K.B.;Jung, Y.I.;Kim, T.J.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.354-360
    • /
    • 2015
  • AHSS (Advanced High Strength Steels) has been increasingly employed by global automotive OEMs in order to satisfy strengthened regulations and reduce weight for fuel efficiency. Hot stamping using boron steels in AHSS increases not only formability but also strength. The typical hot-stamped automotive part is the center pillar that is critical for vehicle side impact. However, the hot-stamped part can be risky for the passenger safety caused by brittle fracture under a vehicle collision. The high power diode laser is suitable for the heat treatment giving AHSS increased elongation that prevents brittle fracture in car crash. Therefore, local softening by laser heat treatment for energy absorption area on the hot-stamped part improves crash-worthiness.

The Analysis about Economical Composition in Ultra High Strength Fiber Reinforced Concrete (경제성을 고려한 초고강도 강섬유보강 콘크리트의 구성인자 분석)

  • Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung;Koh, Kyung-Taek;Kim, Sung-Wook;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.33-36
    • /
    • 2006
  • In manufacturing Ultra high strength fiber reinforced concrete(UHSFRC), steel fiber, super-plasticizer and silica fume are important but they are imported materials therefore very expensive. consequently it is necessary to find substitutes of them or to develop producing techniques in order to manufacture UHSFRC economically. In this study, we investigated if it was possible to substitute blast-furnace slag instead of silica fume and steel fiber of home manufacture instead of one of overseas manufacture.

  • PDF

Simulation of Hydration of Portland Cement Blended With Mineral Admixtures

  • Wang, Xiaoyong;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.565-566
    • /
    • 2009
  • Supplementary cementing materials (SCM), such as silica fume, slag, and low-calcium fly ash, have been widely used as mineral admixtures in high strength and high performance concrete. Due to the chemical and physical effect of SCM on hydration, compared with Portland cement, hydration process of cement incorporating SCM is much more complex. This paper presents a numerical hydration model which is based on multi-component concept and can simulate hydration of cement incorporating SCM. The proposed model starts with mixture proportion of concrete and considers both chemical and physical effect of SCM on hydration. Using this proposed model, this paper predicts the following properties of hydrating cement-SCM blends as a function of hydration time: reaction ratio of SCM, calcium hydroxide content, heat evolution, porosity, chemically bound water and the development of the compressive strength of concrete. The prediction results agree well with experiment results.

  • PDF

Development of Low Anchoring Strength Liquid Crystal Mixtures for Bistable Nematic Displays

  • Dozov, Ivan;Stoenescu, Daniel-Nicusor;Lamarque-Forget, Sandrine;Joly, Stephane;Dubois, Jean-Claude;Martinot-Lagarde, Philippe
    • Journal of Information Display
    • /
    • v.6 no.3
    • /
    • pp.1-5
    • /
    • 2005
  • The recent Bistable Nematic ($BiNem^{(R)}$) LCD technology presents long term bistability, high level passive matrix multiplexing, gray levels capabilities and high optical quality. The $BiNem^{(R)}$ device, based on anchoring breaking, needs specific low anchoring strength materials - alignment layers and liquid crystal mixtures. We present here our approach to develop nematic mixtures with wide enough temperature range and low zenithal anchoring energy.

The High-Strengthening of Concrete with Admixture - On the Artificial Lightweight Aggregate Concrete- (혼화재에 의한 콘크리트의 고강도화에 관한 실험 연구(II) -인공경량골재 콘크리트를 대상으로-)

  • 김화중;김태섭;이용철;박정민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.118-123
    • /
    • 1993
  • The purpose of this study is to put to practical use the economical high-strength lightweight concrete manufactured by domestic materials, through the analysis on the properties of lightweight concrete with the natural zeolite and mud stone abundant in domestic and compare them with those with silica fume. As a result, it was possible to gain proper workability in the lightweight concrete with admixtures through using the superplasticizer. the optimum replacement rate of zeolite and mud stone powder is respectively 5~10%, 10~15% on unit-cement amount. The strength development rate for plain concrete is 27%, 18% at optimum replacement rate.

  • PDF

Evaluation of Fatigue Strength of Weld According to Load of Piping materials for Water Supply and Drainage (상.하수도 배관재 용접부의 하중에 따른 피로강도 평가)

  • Park, Keyung-Dong;Ryu, Hyoung-Ju
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.224-225
    • /
    • 2005
  • The lightness of components required on marine and shipbuilding industry is requiring high strength of components. In particular, fatigue failure phenomena, which happen in metal, bring on danger in human life and property. Therefore, antifatigue failure technology takes an important part of current industries. In this study, it was investigated about endurance and fatigue crack propagation rate of according to stress ratio of SMAW commonly using for welding structures in present. Fatigue crack propagation rate(da/dN) of low load(R=0.1) was lower than of high load(R=0.6) for piping weld. And in stage I, ${\Delta}$Kth, the threshold stress intensity factor of the weld under heavy load is higher than under small load. Fatigue life shows more improvement in the weld of stress ratio R=0.l than in the weld of stress ratio R=0.6.

  • PDF

A study on the hexagonal drawing dies for the high strength materials (고강도 육각 이형 인발 다이스에 관한 연구)

  • 권혁홍;유동진;이정로;이원복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1410-1413
    • /
    • 2003
  • Drawing is a basic plastic deformation method and productive manufacturing process make wire. rod and variety section geometry bar. Study for the rod drawing process of rod was researched long littles. but non-axisymmetric drawing process is weak. So metal flow is very irregular in non-axisymmetric drawing process and difficult to define about material deformation generally. In this paper, to solve material deformation, use finite element method and then define suitable shape for rod to hexagonal drawing dies. And research corner filling rate and surface roughness for the high strength steel hexagonal bar produced defined dies.

  • PDF

A Study on the Optimal Design of a Robotic Welding System for a High-strength Steel Amor Plate (고장력 장갑판재의 자동용접 시스템 최적 설계에 관한 연구)

  • Kim, Byeong-Ho;Kang, Hyeon-Je;Seo, Jae-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.31-38
    • /
    • 2016
  • This study proposes an optimal design for a robotic welding system for a high-strength steel armor plate. In order to identify the welding defect parameters, we analyzed the 4M (man, machine, materials, method) characteristics diagram, as well as a cause and effect matrix, to improve the productivity and quality of welding defects. From these analyses, we designed optimal welding conditions and carried out welding tests -- such as mechanical testing and macro structure tests - with positive results. We determined that it was possible to obtain a quality similar to manual welding with our robotic welding system. In the future, we expect that the system will be used as inspiration for future welding system designs.