• Title/Summary/Keyword: high strength materials

Search Result 3,818, Processing Time 0.033 seconds

Mechanical Properties of Carbon/Carbon Composites Densified by HIP Technique

  • Manocha, L.M.;Warrier, Ashish;Manocha, S.;Banerji, S.;Sathiyamoorthy, D.
    • Carbon letters
    • /
    • v.6 no.1
    • /
    • pp.6-14
    • /
    • 2005
  • The study of mechanical properties and fracture behaviour of carbon/carbon composites is significant to its application and development. These are dependent on microstructure and properties of reinforcing fibers and matrix, fiber/matrix interface and porosity/cracks present in the composites. In the present studies high-density carbon/carbon composites have been prepared using PAN and various pitch based carbon fibers as reinforcements and pitch as matrix with repeated densification cycles using high-pressure impregnation and carbonization technique. Scanning electron microscopy has been used to study the fracture behaviour of the highly dense composites and correlated with structure of the composites. The geometry of reinforcement and presence of unfilled voids/cracks was found to influence the path of crack propagation and thereby the strength of composites. The type of stresses (tensile or compressive) accumulated also plays an important role in fracture of composites.

  • PDF

High Strength Electrospun Nanofiber Mats via CNT Reinforcement: A Review

  • Pant, Bishweshwar;Park, Mira;Park, Soo-Jin;Kim, Hak Yong
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.186-193
    • /
    • 2016
  • The development of electrospun nanofibers with improved mechanical properties is of great scientific and technological interest because of their wide-range of applications. Reinforcement of carbon nanotubes (CNTs) into the polymer matrix is considered as a promising strategy for substantially enhancing the mechanical properties of resulting CNTs/polymer composite mats on account of extraordinary mechanical properties of CNTs such as ultra-high Young's modulus and tensile strengths. This paper summarizes the recent developments on electrospun CNTs/polymer composite mats with an emphasis on their mechanical properties.

Study on Synthesis and Mechanical Properties of $B_4C$ by Self Propagating High Temperature Synthesis Chemical Furnace (SHS 화학로에 의한 $B_4C$ 합성 및 기계적 특성에 관한 연구)

  • Lee, Hyung-Bock;Cho, Duk-Ho;Park, Sung;Le, Jea-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.8
    • /
    • pp.685-693
    • /
    • 1993
  • Boron cabride was prepared from the mixture of metal boron and graphite powders in Argon atmosphere by Self-propagating High-temperature Synthesis Chemical furnace. The most excellent mechanical properties were in the case that Fe was added as a sintering agent before the synthesis of the B4C in the Chemical furnace. Sintered B4C-5wt% Fe specimen showed the relative density of 95%, of theoretical value, and 3-point-flexural strength of 380MPa.

  • PDF

Analysis and Design of the Composite Carbody of Tilting Train (복합재 틸팅열차 차체 구조물의 해석 및 설계)

  • Kim Soo-Hyun;Kang Sang-Guk;Lee Sang-Eui;Kim Chun-Gon;Lee Sang-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.47-50
    • /
    • 2004
  • Weight reduction of the carbody is of great concern in developing high speed tilting train. Currently the composite materials are widely applied to the carbody structure due to their excellent material properties such as high specific strength and stiffness characteristics. In this paper, finite element analysis was conducted to design sandwich structures of composite carbody of the Korean Tilting Train eXpress(TTX). Several load tests on the carbody according to JIS E 7105, such as static vertical, compressive and torsional load tests was performed by finite element analysis, and the structural safety of composite carbody structure was verified.

  • PDF

Current Status of Semiconductor and Microelectronic Packaging Technology Development in Korea

  • Sun, Yong-Bin
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.1-6
    • /
    • 2002
  • It is very important to foresee the main stream of technology development in the future. Packaging related manufacturers in equipment and materials focused their strength on products sharing big portion of world markets. As a result, domestic supply sources for packaging materials and equipment has been increased, but the manufacturer's capital and manpower is so limited to develop high technology machinery and high functional materials. The current status of packaging infrastructures in Korea is reviewed statistically. The hot issues in packaging arena are now in wafer level packaging, 3D packaging, and ultra-thin packaging. In addition, the recent advancement in microelectronics packaging technology is also covered.

  • PDF

Preparation of $TiB_2$ Dispersed Cu Alloy by Spark Plasma Sintering

  • Kim, Kyong-Ju;Lee, Gil-Geun;Park, Ik-Min
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.523-524
    • /
    • 2006
  • The $TiB_2$ dispersion strengthened copper alloy was attracted as thermal and electrical functional material for the high mechanical strength, high thermal stability and good conductivity of $TiB_2$. In the present study, the focus is on the synthesis of $TiB_2$ dispersed copper alloy by spark plasma sintering process using copper oxide and titanium diboride as raw materials. The mechanical, thermal and electrical properties of sintered bodies were discussed with the sintering parameters, and developed microstructure and phase of sintered bodies.

  • PDF

A Study on the Properties & Application for High-Calcium Fly Ash (고칼슘 플라이애쉬의 특성 및 활용방안에 관한 연구)

  • Won, Cheol;Lee, Sang-Soo;Kwon, Yeong-Ho;Ahn, Jae-Hyen;Park, Chil-Lim
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.5
    • /
    • pp.155-163
    • /
    • 1995
  • The primary purpose of this study is to hvestigate reusal techniques of high calclun-i fly ash in the construct.ion field, which may contribute to the savings of construction materials and consenratlng environment. Furt.hcrrnore, it can setup material properties or characteristics requiremi for development of new materials. Firstly, chemical and physical cahraci.eristics of liigh~calciurn fly ash is arialyseti. And then, the usability of the concrete is tcsted by investigating the flowablility and strength development through parameters of various replace ment r,itios with respect to different nuxing conditions. Finally, the durability and mechanical properties(e1astic nlodulus of the concrete is tested. As the result of the study, the following conclusions are derived : (1) the quaritii y of the CaO The primary purpose of this study is to hvestigate reusal techniques of high calclun-i fly ash in the co:lstruct.ion field, which may contribute to the savings of construction materials and consenratlng environment. Furt.hcrrnore, it can setup material properties or characteristics requiremi for development of new materials. Firstly, chemical and physical cahraci.eristics of liigh~calciurn fly ash is arialyseti. And then, the usability of the concrete is tcsted by investigating the flowablility and strength development through parameters of various replace ment r,itios with respect to different nuxing conditions. Finally, the durability and mechanical properties(e1astic nlodulus of the concrete is tested. As the result of the study, the following conclusions are derived : (1) the quaritii y of the CaO

Shear Behavior of Slender HSC Beams Reinforced with Stirrups using Headed Bars, High Strength Steels, and CFRP Bars (헤디드 바, 고장력 철근 및 CFRP 바로 전단보강된 세장 고강도콘크리트 보의 전단 거동 평가)

  • Yang, Jun-Mo;Kwon, Ki-Yeon;Choi, Hong-Shik;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.717-726
    • /
    • 2007
  • If conventional reinforcements are used for high-strength concrete (HSC) structures, a large amount of the reinforcement must be required to compensate for the brittleness of HSC and make the best use of HSC. This raises some structural problems such as steel congestion and an increase in self-weight. Therefore, alternative reinforcing materials and methods for HSC structures are needed. In this study, four full-scale beam specimens constructed with HSC (100 MPa) were tested to investigate the effect of the different shear reinforcements on the shear behavior. These four specimens were reinforced for shear stirrups with normal and high strength steels, headed bars, and carbon fiber-reinforced polymer (CFRP) bars, respectively. In addition, steel fibers were added to the HSC in the two of the specimens to observe their beneficial effects. The use of high strength steels resulted in the improvement of the shear capacity since the shear resistance provided by the shear reinforcements and the bond strength were increased. The specimen reinforced with headed bars also showed a superior performance to the conventional steel reinforced specimen due to the considerably high anchorage strength of headed bar. CFRP bars used in this research, however, seemed to be inadequate for shear reinforcement because of the inferior bond capacity. The presence of the steel fibers in concrete led to remarkable improvement in the ductility of the specimens as well as in the overall cracks control capability.

Evaluation of the Behavioral Characteristics of Soil Nail Using High-strength Steel Pipe through Field Test (현장시험을 통한 고강도 강관을 이용한 쏘일네일의 거동특성 평가)

  • Park, Jeaman;Park, Duhee;Lee, Jongkwon;Jung, Kyoungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.2
    • /
    • pp.5-13
    • /
    • 2021
  • In this study, as the production of high-strength steel pipes due to the development of steel materials, the stability and applicability of the soil nailing method using high-strength steel pipes were evaluated. Rebars used as reinforcement in the soil nailing method are the same in order to determine the behavioral characteristics and the effect of increasing the reinforcement when replacing it with a high-strength steel pipe of a diameter, a field test were conducted to confirm the stability. As a result of the tensile test, the measured strain is smaller than the strain in the theoretical equation, so it can be seen that the behavior is similar to that of the soil nailing method using rebars. As a result of the displacement measurement, the displacement of the high-strength steel pipe is larger than that of the rebars is considered to be the effect of the internal grouting effect of the steel pipe and the decrease in the cross-sectional area. In the case of using high-strength steel pipes for the soil nailing method, it is judged that the field applicability is good by improving stability and workability through member performance and weight reduction.

An Effect of Compressive Residual Stress on a High Temperature Fatigue Crack Propagation Behavior of The Shot-peened Spring Steel (압축잔류응력이 스프링강의 고온환경 피로크랙 진전거동에 미치는 영향)

  • Park, Keyoung-Dong;Jung, Chan-Gi
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.117-124
    • /
    • 2002
  • The lightness of components required in automobile and machinery industry is requiring high strength of components. In particular, manufacturing process and new materials development for solving the fatigue fracture problem attendant upon high strength of suspension of automobile are actively advanced. In this paper, the effect of compressive residual stress of spring steel(JISG SUP-9) by shot-peening on fatigue crack growth characteristics in high temperatures($100^{\circ}C,\;150^{\circ}C,\;180^{\circ}C$) was investigated with considering fracture mechanics. So, we can obtain followings. (1) Compressive residual stress is decreased in high temperature, that is, with increasing temperature. (2) The effect of compressive residual stress on fatigue crack growth behavior in high temperature is increased below ${\Delta}K=17{\sim}19MPa\sqrt{m}$. The fatigue crack growth rate is increased with increasing temperature. The fatigue life is decreased with increasing temperature. (3) The dependence of temperature and compressive residual stress on the parameters C and m in Paris' law formed the formulas such as equations (3),(4),(5),(6),(7),(8),(9),(10). (4) It was investigated by SEM that the constraint of compress residual stress for plastic zone of fatigue crack tip was decreased in high temperature as compared with room temperature.

  • PDF