• Title/Summary/Keyword: high strength materials

Search Result 3,818, Processing Time 0.032 seconds

High Consistency Pulping Treatment of Fractionated OCC Pulp for Improving Strength (강도 개선을 위한 분급된 OCC펄프의 고농도 펄핑 처리 기술)

  • Hur Young Dae;Lee Sang Gil;Lee Hak Lae;Youn Hye Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.4 s.112
    • /
    • pp.18-25
    • /
    • 2005
  • The mechanical strength is the prime requisite for linerboard and corrugating mediums. Repeatedly recycled OCC fibers show less suitable property for papermaking mostly due to hornification and reduced fiber length. To overcome these problems many researches including fractionation, enzymatic treatment, and chemical or mechanical treatments of fibers have been carried out. In this study, the effect of mechanical treatment by high consistency pulping on the characteristics of recycled fibers as well as mechanical properties of sheets were investigated. Results on the strength properties of handsheets made of recycled fibers that were treated to same freeness level by beating and high consistency pulping, respectively, showed that beating treatment was more efficient in improving strength. Drainage and recycling potential of the fibers treated by high consistency pulping, however, were expected to be superior to beating because fines content and fiber length didn't change significantly.

A Study on the Mix Proportion of Self-Compacting High Performance Concrete (자기충전성 고성능 콘크리트의 배합에 관한 연구)

  • 이승한;한형섭;이원기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.269-274
    • /
    • 1998
  • In this study, to increase fluidity and resistance of segregation of materials, the effect of each of the materials, which have effects on high performance concrete from investigating the properties of strength and drying shrinkage of high performance concrete made by the basic mix proportion used fly-ash and ground granulated blast-furnace slag after hardening, has been checked. According to the experimental results, fluidity on W/C = 34% was satisfied within slump-flow 65$\pm$ 5cm and U-type self-compactability difference 5cm. On the properties of strength, high performance concrete produced compressive strength over 400kg/$\textrm{cm}^2$ in 28days when powder was replaced by 40% of fly-ash and 60% of ground granulated blast-furnace slag. And compressive strength was taken over 600kg/$\textrm{cm}^2$ equal to non-replacement in 91days. Also, the length change of concrete with the addition of fly-ash was smaller than that without it. Therefore, it may be effective on the decrease of drying shrinkage volume.

  • PDF

The properties of High Performance Concrete Using Fly Ash and Blast-Furnace Slag (플라이애쉬 및 고로슬래그를 사용한 고성능콘크리트의 특성)

  • 이승한;정용욱;박정준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.275-280
    • /
    • 1998
  • In this study, to increase fluidity and resistance of segregation of materials, the effect of each of the materials, which have effects on high performance concrete from investigating the properties of strength and drying shrinkage of high performance concrete made by the basic mix proportion used fly-ash and ground granulated blast-furnace slag after hardening, has been checked. By the results of this experiment, fluidity on W/C=34% was satisfied within slump-flow 65$\pm$5cm and U-type self-compacting difference 5cm. On the properties of strength, high performance concrete produced compressive strength over 400kg/$\textrm{cm}^2$ in 28days when powder was replaced by 40% of fly-ash and 60% of ground granulated blast-furnace slag. And compressive strength was taken over 600kg/$\textrm{cm}^2$ equal to non-replacement in 91days. Also, the length change of concrete with the addition of fly-ash was smaller than that without it. Therefore, it may be effective on the decrease of drying shrinkage volume.

  • PDF

A Study on an Improvement of Economical Efficiency for an Overhead Catenary Supporting Thin Walled Steel Pole by the Application of High-strength Steel (고강도 강의 적용을 통한 전차선로 강관 지지물 경제성 개선에 대한 연구)

  • Cho, Yong-Hyeon;Hwang, Min-Oh;Seok, Chang-Sung;Lee, Ki-Won
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.582-587
    • /
    • 2006
  • Since Kyung-Bu High Speed Line has been introduced, a railway electrification has been proceeded rapidly. Therefore, in this study, a specification and application standard for an overhead catenary supporting thin walled steel pole using STKT590 material are proposed in order to improve an economical efficiency. To decide the specification, strength analysis, deflection analysis, deflection test and fracture test are performed. If the supporting structures using high strength materials such as STKT590 are installed, the advantages of cost by the materials price reduction and demand and supply are expected.

Introduction of Explosion Bulge Test of High Strength Steel (고장력 강재의 폭파변형시험 소개)

  • Park, Tae-Won;Kim, Hong-Gyu;Baek, Du-Hyeon;Hong, Seong-Seok;Song, Yeong-Beom;Kim, Jin-Yeong;Sim, In-Ok;Kim, Yeong-U
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.3-5
    • /
    • 2005
  • Explosion Bulge Test has been carried out in order to evaluate base metal and weldment of high strength steels which used for submarine and aircraft carrier. High strength steels such as DS80/100/130 and PFS80/100 were developed by ADD and POSCO. In future, these materials will be used for the construction of larger submarine and aircraft carrier, and EBT is necessary to certificate hull materials for these. EBT methode in air and underwater was developed by ADD, and this report described the test procedure of EBT and the results of EBT for high strength steels.

  • PDF

The Study on the Optimum Mix Design of the High-Strength Concrete in Site (고강도 콘크리트의 현장최적배합에 관한 연구)

  • Lee, Sang-Soo;Won, Cheol;Kim, Dong-Seok;Ahn, Jae-Hyun;Park, Chil-Lim
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.232-238
    • /
    • 1996
  • In this paper, the properties of high-strength concrete are described with respect to materials and mix conditions(water-cement ratio, chemical admixture, replacement of fly ash). As primary purposes of this study, the optimum mix design method of high-strength concrete to decrease unit cement contents is investigated, and the properties of fresh and hardened concretes are tested in terms of slump, air content and compressive strength. As results of this study, workability and strength development of the high-strength concrete depend on the water-cement ratio, replacement ratio of fly ash and dosage of the chemical admixture. The conditions which are proposed optimum mix design of the high-strength concrete show W/C 37%, S/A 42~45% and unit cement content 470~480kg/$\textrm{m}^3$. Based on the results, the applicability of high-strength concrete in site is clearly proved.

  • PDF

Effects of Vacuum Heat Treatment and Salt bath Heat Treatment Conditions on Mechanical Properties of High Speed tool Steel (금속도 공구강의 기계적 성질에 미치는 진공열처리와 염욕열처리 조건의 영향)

  • Kim, Je-Don;Kim, Kyung-Sik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.1
    • /
    • pp.7-13
    • /
    • 2013
  • Vacuum heat treatment(indirect heating method) has long exposure time at high temperature and low quenching rate. Contrarily salt bath heat treatment (direct heating method) has short exposure time at high temperature and fast cooling rate. With these different features of processes, mechanical properties such as hardness, tensile strength and impact strength of products show very different results. In this study, Salt bath heat treated products showed higher tensile strength and impact strength than vacuum heat treated products but hardness was not much different. These lower mechanical properties of vacuum heat treated products are due to differences in heat process and secondary hardening with high temperature tempering process. Consequently, It indicates that salt bath heat treatment is better way than vacuum heat treatment for product to have high mechanical properties.

Effect of Metakaolin Content on the Properties of High Strength Concrete

  • Dinakar, P.;Sahoo, Pradosh K.;Sriram, G.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.215-223
    • /
    • 2013
  • This study presents the effect of incorporating metakaolin (MK) on the mechanical and durability properties of high strength concrete for a constant water/binder ratio of 0.3.MK mixtures with cement replacement of 5, 10 and 15 % were designed for target strength and slump of 90 MPa and $100{\pm}25mm$. From the results, it was observed that 10 % replacement level was the optimum level in terms of compressive strength. Beyond 10 %replacement levels, the strength was decreased but remained higher than the control mixture. Compressive strength of 106 MPa was achieved at 10 % replacement. Splitting tensile strength and elastic modulus values have also followed the same trend. In durability tests MK concretes have exhibited high resistance compared to control and the resistance increases as the MK percentage increases. This investigation has shown that the local MK has the potential to produce high strength and high performance concretes.

Nominal axial and flexural strengths of high-strength concrete columns

  • Al-Kamal, Mustafa Kamal
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.85-94
    • /
    • 2019
  • The ACI building code is allowing for higher strength reinforcement and concrete compressive strengths. The nominal strength of high-strength concrete columns is over predicted by the current ACI 318 rectangular stress block and is increasingly unconservative as higher strength materials are used. Calibration of a rectangular stress block to address this condition leads to increased computational complexity. A triangular stress block, derived from the general shape of the stress-strain curve for high-strength concrete, provides a superior solution. The nominal flexural and axial strengths of 150 high-strength concrete columns tests are calculated using the proposed stress distribution and compared with the predicted strength using various design codes and proposals of other researchers. The proposed triangular stress model provides similar level of accuracy and conservativeness and is easily incorporated into current codes.

Development of Green Cement Type Grouting Materials with High Toughness and Non-Shrinkage Including Powder of Waste Tire and Resin (분말 폐타이어와 분말 수지를 함유한 환경친화적 고인성 시멘트계 무수축 그라우트재의 개발)

  • Park, Seok-Kyun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.623-630
    • /
    • 2007
  • Grouting materials are used for the unification of superstructural and substructural body like bridge seat (shoe) or machinery pedestal and e.t.c by filling their intercalary voids. Accordingly, grouting materials have been developed and used mainly with products of high strength because those materials are constructed specially in a part receiving large or impact load. In this situation, the structural body constructed by grouting materials with high stiffness-centered (caused by high strength) products is apt to cause brittle failure when receiving over a limit stress and to cause cracks according to cumulative fatigue by continuous and cyclic load. In addition, grouting materials are apt to cause cracks by using too much rapid hardening agents that give rise to high heat of hydration to maintain high strength at early age. In this study, to overcome these problems, cement type grouting materials including powder of waste tire and resin as elastic materials which aim to be more stable construction and to be improvement of mother-body's unification are developed and endowed with properties of high toughness and high durability add to existing properties of high flowability, non-shrinkage and high strength. Besides, this study contribute to of for green construction materials for being possible recycling industrial waste like waste tire and flyash. On the whole, seven type mixing conditions are tested and investigated to choose the best mixing condition.