• Title/Summary/Keyword: high strength materials

Search Result 3,818, Processing Time 0.038 seconds

Joint Characteristics of Lubricant-Impregnated Nylon and Metals (윤활제 함침 나일론과 금속의 접합특성)

  • Chang, Yoon-Sang;Kang, Suk-Choon;Ho, Kwang-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.84-89
    • /
    • 2003
  • The joint method and characteristics of lubricant Impregnated MC nylon and metal are analyzed. Considering the productivity and economics, two materials are Joined with the process of turning, knurling, and induction heating. The Joint strength is determined by adhesion of the melted nylon, the size of knurl, and the interference from the difference of the diameters. The parameters affecting induction heating process are analyzed. The adhesion strength of the melted nylon is measured. Finally the joint strength is analyzed in the environments of low, room, and high temperature. The nylon/metal Joined material is expected to be widely used as the sliding machine elements with good friction and shear strength.

  • PDF

A Study on the Bond Strength of Plasma Sprayed WC-12% Co Coating (플라즈마 용사된 WC-12%Co 피복층의 접합강도에 관한 연구)

  • ;;Chr
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.112-116
    • /
    • 2000
  • The development of new spraying processes has increased the demand for high quality protective coatings. Many thermal spraying processes have been developed to obtain coatings for a wide spectrum of materials and substrates. The plasma spray process was used to deposit coatings of WC-12%Co powders on mild steel substrate, and the characteristics of as-sprayed and vacuum heat treated coatings have been investigated. The variations of microhardness and bond strength in WC-12%Co coatings after heat treatment under vacuum circumstance have been investigated. The effects of phases and morphologies of WC-12%Co coatings have been investigated by utilizing X-ray diffraction and scanning electron microscopy, respectively. The microhardness and bond strength of the coatings were increased with increasing the temperature in the temperature range of $700^{circ}C~1000^{\circ}C$. The bond strength was obtained 49 MPa after vacuum heat treatment at $1000^{\circ}C$.

  • PDF

A Study on the Fluidity and Compressive Strength of HPC according to the Replacement Ratio of Crushed Sand (부순모래 대체율에 따른 고강도콘크리트의 유동특성 및 강도특성에 관한 연구)

  • Choi, Se-Jin;Kang, Won-Seok;Park, Chang-Soo;Lee, Seong-Yeon;Lee, Sang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.437-440
    • /
    • 2006
  • Generally, the strength of concrete depends on factors of materials, mix proportions, compaction, manufacturing methods and curing and so on. And recently, it has increased the using of crushed sand for concrete due to the exhaustion of good natural aggregate. This is an experimental study to compare and analyze the fluidity and compressive strength of ultra-high strength concrete according to the replacement ratio of crushed sand. For this purpose, the mix proportions of concrete according to the W/B ratio and replacement ratio of crushed sand was selected. And then air content, slump-flow, O-lot, compressive strength test were performed.

  • PDF

Dielectric Strength of Macro Interface between Epoxy and Rubber According to the Interface Condition (계면조건에 따른 에폭시와 고무 거시계면의 절연내력)

  • Oh, Yong-Cheul;Bae, Duck-Kweon;Kim, Jin-Sa;Kim, Chung-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.12
    • /
    • pp.581-585
    • /
    • 2006
  • Macro interfaces between two different bulk materials which affect the stability of insulation system exist inevitably in the complex insulation system using in extra high voltage (EHV) electric devices. In this paper, Interface between epoxy and ethylene propylene diene terpolymer (EPDM) was selected as an interface in electrical insulation system and the AC dielectric strength of the interface was investigated. Air compress system was used to give pressure to the interface. Specimens were prepared in various ways to generate different surface conditions for each type of interface. Increasing interfacial pressure, decreasing surface roughness and spreading oil over surfaces improve the AC interfacial dielectric strength. Especially, the dielectric strength was saturated at certain interfacial pressure.

Joint Characteristics of the Nylon/Metal Sliding Machine Elements (나일론/금속 접합 마찰기계요소의 접합특성)

  • 장윤상
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.125-132
    • /
    • 2003
  • The joint method and characteristics of MC nylon and metal are analyzed. Considering the productivity and economics, two materials are joined with the process of turning, knurling, and induction heating. The joint strength is determined by adhesion of the melted nylon, the size of knurl, and the interference from the difference of the diameters. The adhesion strength of the melted nylon is measured. The effects of the knurl size and diameter difference are analyzed with the statistical methods. Finally the joint strength is analyzed in the environments of low, room, and high temperature. Based on this study, the nylon/metal material is expected to be widely used as the sliding machine elements with good lubrication and strength properties.

Machine Learning Based Strength Prediction of UHPC for Spatial Structures (대공간 구조물의 UHPC 적용을 위한 기계학습 기반 강도예측기법)

  • Lee, Seunghye;Lee, Jaehong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.111-121
    • /
    • 2020
  • There has been increasing interest in UHPC (Ultra-High Performance Concrete) materials in recent years. Owing to the superior mechanical properties and durability, the UHPC has been widely used for the design of various types of structures. In this paper, machine learning based compressive strength prediction methods of the UHPC are proposed. Various regression-based machine learning models were built to train dataset. For train and validation, 110 data samples collected from the literatures were used. Because the proportion between the compressive strength and its composition is a highly nonlinear, more advanced regression models are demanded to obtain better results. The complex relationship between mixture proportion and concrete compressive strength can be predicted by using the selected regression method.

Evaluation of the Strength Characteristics of ECC Based on Cement Replacement Ratios with Biochar

  • Kim, Sangwoo;Gwak, Jaewon;Choi, Sooncheol;Kim, Jinsup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.615-627
    • /
    • 2024
  • This study presents fundamental research data on the application and utility of biochar in Engineered Cementitious Composites (ECC) for carbon sequestration. The study experimentally measures and compares the compressive strength, tensile strength, and flexural strength of high-toughness biochar-incorporated ECC (BE) and biochar-incorporated mortar (BM) with varying levels of biochar replacement. This study aims to compare BM and BE. BM shows an increase in mechanical properties at a biochar content of 1 %. BE shows an increase in mechanical properties at a biochar content of 2 %. The reason for the increase is that biochar particles fill the voids between the binder materials, acting as a filler. This helps form a denser structure. These findings suggest that incorporating biochar into mortar and ECC can enhance their mechanical properties at optimal biochar contents.

Development of Alloy with High Strength and Damping Capacity for High-Performance of Precision Devices by Vibration Control (진동제어에 의한 정밀기기의 고성능화를 위한 고강도 및 고감쇠능 합금개발)

  • Kana, Chang-Yong;Kim, Ik-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.46-51
    • /
    • 2008
  • The effect of the addition of Co and N and subzero treatment on tensile strength and damping capacity was investigated in Fe-Cr-Mn alloy. Austenite was transformed into martensite by cold rollins increasing the degree of cold rollins led to an increase in the volume fraction of martensite. The damping capacity linearly increased with increasing volume fraction of ${\varepsilon}$ martensite in cold rolled specimens and subzero treated specimens after cold rolling. The volume fraction of ${\varepsilon}$ martensite, tensile strength and damping capacity was also increased by the addition of Co, while this treatment decreased the elongation. However, the volume fraction of ${\varepsilon}$ martensite, elongation and damping capacity were reduced by the addition of N, although the tensile strength increased. Tensile strength and damping capacity werealso increased by subzero treatment, while elongation decreased.

소형 펀치시험에 의한 강용접부의 파괴강도 평가에 관한 연구 2

  • 류대영;송기홍;정세희
    • Journal of Welding and Joining
    • /
    • v.7 no.4
    • /
    • pp.56-67
    • /
    • 1989
  • In this study, the possibility of evaluating the peculiar fracture strength of weldment in high strength steels was investigated by means of a small punch(SP) test. In order to obtain the ductile-brittle transition temperature(DBTT) of SP energy by which the fracture strength of weldment in structural steels such as SS41 and SM53B steels had been evaluated in our preceding publication, the effects of notches and loading rates on SP energy were discussed. It was found that the correspondence of SP energy to critical COD at test temperature -196.deg. C showed a linear relation with some deviation. The empirical correlation with scatter band, Esp/(Esp)p = 1.67[.delta./(.delta./sub c//(.delta./sub c/)/sub p/]-0.55, was developed between the SP energy ratio and critical COD ratio of each weld structure compared with parent material at test temperature -196.deg. C. In addition, there did not appear to be a significant effect of test materials and specimen size etc. on the correlation.

  • PDF

A Study on the Effect of Primer Processing Method on the Mechanical Properties of Impact Relief Air Cushion Materials Prepared through Thermal Film Laminating (프라이머 가공 방법이 열융착 필름 라미네이팅으로 제조한 고충격 대응 에어쿠션 소재의 물성에 미치는 영향 연구)

  • Kim, Ji Yeon;Kim, Hun Min;Min, Mun Hong
    • Textile Coloration and Finishing
    • /
    • v.34 no.3
    • /
    • pp.173-184
    • /
    • 2022
  • In this study, the TPU film was laminated on an aramid fabric or circular knits in order to implement an air cushion material that can respond to high impact forces in case of a fall and is easy to expand. To increase the bonding strength between the fabric layer and the film layer, a primer layer was formed in two ways: one for thermally bonding and laminating PET film and two for coating and aging hot melt type PUR adhesive. The tensile strength of the aramid air cushion was 2.5 times higher than that of the circular knits, but the tensile elongation of the aramid air cushion was very low compared to that of the circular knits. The tear strength of the aramid air cushion was about twice or more superior to that of the circular knits, the primer treatment method was good at A, and the peel strength was excellent at method A. The aramid air cushion was the lightest in weight. Summarizing the above results, it was best to combine the air cushion material with aramid woven fabric and primer treatment method A to cope with the high impact force applied when falling.