• Title/Summary/Keyword: high strength concrete column

Search Result 449, Processing Time 0.026 seconds

Guidelines for fire resistance design of high-strength concrete column (고강도 콘크리트 기둥의 내화설계 가이드라인)

  • Kim, Dae-Hoe
    • Fire Protection Technology
    • /
    • s.43
    • /
    • pp.34-45
    • /
    • 2007
  • 고강도 콘크리트 기둥의 내화성능을 향상시키기 위한 설계지침을 개발하기 위한 연구프로그램의 전체적 결과가 도출되었다. 고강도 콘크리트 기둥과 보통강도 콘크리트 기둥의 내화성능을 비교하였다. 화재상태에서 고강도 콘크리트 기둥의 구조적 거동에 영향을 미친는 다양한 요소에 대하여 토론하였다. 설계 가이드라인은 고강도 콘크리트 기둥의 폭렬을 줄이고 내화성능을 향상시키기 위하여 준비하였다.

  • PDF

Seismic Performance of Beam-Column Connections for Special Moment Frame Using 600 MPa Flexural Reinforcement (600 MPa 휨 철근을 사용한 특수 모멘트 골조의 보-기둥 접합부의 내진성능)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Choi, Won-Seok;Chung, Lan;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.591-601
    • /
    • 2011
  • An experimental study was performed to evaluate the seismic performance of beam-column connections using 600 MPa re-bars for beam flexural reinforcement. Three full scale specimens of interior beam-column connection and two specimens of exterior beam-column connection were tested under cyclic loading. The specimens were designed to satisfy the requirements of Special Moment Frame according to current design code. The structural performance of the specimens with 600 MPa re-bar were compared with that of the specimen with 400 MPa re-bars. The test results showed that bond-slip increased in the beam-column joint. However, the load-carrying capacity, deformation capacity, and energy dissipation capacity of the specimens with 600 MPa re-bar were comparable to those of the specimens with 400 MPa re-bars.

An Experimental Study on the Fire Behavior of CFT Column under the Constant Axial Loading Condition in Fire (일정축력을 받는 콘크리트 충전 각형기둥의 경계조건 변화에 따른 화재거동특성에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Min, Byung-Youl;Kwon, In-Kyu;Kwon, Ki-Hyuk
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.69-75
    • /
    • 2010
  • A concrete filled square steel tube (CFT) is composed of the external steel material, which its strength is reduced in fire due to sudden temperature increase, and the internal concrete with high thermal capacity that can ensure the fire resistance performance of the structure. Therefore, research about the influence factors of the structural performance of CFT column is required in order to apply CFT column to a fire resisting structure, and additional research about influence for each condition is also necessary. Among the influence factors, the boundary condition between column and beam is important structurally, and it is one of the major factors that determine overall fire resisting performance. This study performed a fire experiment under loading in order to analyse the influences of CFT column to the boundary condition. As the results of the experiment, fire resistance time of 106 minutes was ensured for the clamped-end condition but 89 minutes for the hinge-end condition in case of the 360 cross section. And, fire resistance time of 113 minutes was ensured for the clamped-end condition but 78 minutes for the hinge-end condition in case of the 280 cross section.

Analysis of Apparatus Variables for Deformation Strength Test of Asphalt Concrete Based on Correlation with Rutting and Prediction Model for Rutting (소성변형과의 상관성 및 추정모델을 통한 변형강도 시험장치 변수 분석)

  • Kim, Kwang-Woo;Lee, Moon-Sup;Kim, Sung-Tae;Lee, Soon-Jae
    • International Journal of Highway Engineering
    • /
    • v.4 no.4 s.14
    • /
    • pp.41-52
    • /
    • 2002
  • This study dealt with analysis of size effect of testing apparatus for Kim test which measures rut resistance characteristics of asphalt mixture under static loading. Two columns in different diameter with each column having different radios of round cut (Curvature) at the bottom were used for testing asphalt mixture. Deformation load ($P_{max}$) and deformation strength ($K_D$) were found to have relatively high correlation with rut depth and dynamic stability of asphalt concrete. Diameter of specimen was not a significant factor in this test. From the statistical correlation analysis with rutting properties, the radius of curvature and diameter of loading column were found to be important factor affecting the results of the test. Among the radios (r) of curvatures, r=0.5cm and 1.0cm showed much higher correlation than the column without curvature, and r=1.0cm being better between the two. The column with diameter of 4cm showed better correlation than diameter of 3cm. Therefore, the column of 4cm diameter with r=1.0cm was found to be the best among various apparatus sizes. Prediction models for rut depth and dynamic stability were developed for each aggregate mixture based on Kim test variables using SAS STEPWISE procedure. Therefore, if this test method is validated through further study, Kim test can be used for selecting asphalt mixture with the highest resistance against permanent deformation.

  • PDF

The Effect of Thickness of Sprayed Fireproofing on Temperature of Main Bars under Fire Test (화재 시험시 내화 피복재 두께가 주철근의 온도에 미치는 영향)

  • Park Chan Kyu;Lee Seung Hoon;Kim Gyu Dong;Kim Gyu Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.389-392
    • /
    • 2005
  • In this study, the effect of thickness of sprayed fireproofing on temperature of main bars under fire test was investigated for high strength concrete member(column) prevented the spalling. The thicknesses of sprayed fireproofing were 0, 10, 20 and 30mm. Test was carried out according to ISO-KS standard temperature-time curve during 3hrs. Based on temperature results of main bars after 3hrs, it appears that the temperatures of the main coner bar are about 400$^{circ}C$ and 500$^{circ}C$, when the thicknesses of sprayed fireproofing are 5mm and 2mm, respectively.

  • PDF

Experimental Study on the Hysteretic Behavior of R/C Low-Rise Shear Walls under Cyclic Loads (반복하중을 받는 철근콘크리트 저형 전단벽의 이력거동에 관한 실험적 연구(II) -바벨형 단면(Barbell Shape)의 내력과 연성을 중심으로-)

  • 최창식;이용재;윤현도;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.68-73
    • /
    • 1991
  • Results of an experimental investigation of low-rise reinforced concrete shear walls with barbell cross section under cyclic loads are discussed and evaluated. Four halr scale models of test specimens with height to length ratio of 0.75 were experimented. The dimension of all walls is 1500mm wide $\times$ 950 mm high $\times$ 100 mm thick and the section of all boundary column at both ends is 200 mm $\times$ 200mm. Main variables are : design concept, vertical flexural reinflrcement ratios and reinforcement details(including crossed diagonal shear reinforcement in SW7 specimen). In SW7 specimen, maximum strength and consequently dissipating energy index were 1.45 and 1.28 times greater than those of SW6 specimen, respectively.

  • PDF

Axial Behavior of High Performance Fiber Reinforced Cementitious Composite Columns with PVA Fibers (PVA섬유를 사용한 고인성 시멘트 복합체 기둥의 압축거동)

  • Byun Jang-Bae;Jeon Su-Man;Jeon Esther;Kim Sun-Woo;Hwang Sun-Kyung;Yun Hyun-Do;Lim Byung-Hun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.29-32
    • /
    • 2005
  • An experimental investigation on the strength and behavior of High Performance Fiber Reinforced Cement Composite(HPFRCC) column with Polyvinyl alcohol(PVA) fibers under axial load have been carried out. The columns were subjected to monotonic axial compression until failure. The variables in this study are the combination ratio of PVA, and the volumetric ratio of transverse reinforcement. Test results showed that the fibers, when used in PVA2.0, could result in superior composite performance compared to their individual fiber reinforced cement composites.

  • PDF

Simulation of the behaviour of RC columns strengthen with CFRP under rapid loading

  • Esfandiari, Soheil;Esfandiari, Javad
    • Advances in concrete construction
    • /
    • v.4 no.4
    • /
    • pp.319-332
    • /
    • 2016
  • In most cases strengthening reinforced concrete columns exposed to high strain rate is to be expected especially within weak designed structures. A special type of loading is instantaneous loading. Rapid loading can be observed in structural columns exposed to axial loads (e.g., caused by the weight of the upper floors during a vertical earthquake and loads caused by damage and collapse of upper floors and pillars of bridges).Subsequently, this study examines the behavior of reinforced concrete columns under rapid loading so as to understand patterns of failure mechanism, failure capacity and strain rate using finite element code. And examines the behavior of reinforced concrete columns at different support conditions and various loading rate, where the concrete columns were reinforced using various counts of FRP (Fiber Reinforcement Polymer) layers with different lengths. The results were compared against other experimental outcomes and the CEB-FIP formula code for considering the dynamic strength increasing factor for concrete materials. This study reveals that the finite element behavior and failure mode, where the results show that the bearing capacity increased with increasing the loading rate. CFRP layers increased the bearing capacity by 20% and also increased the strain capacity by 50% through confining the concrete.

Spalling Reduction Method of High-Strength Reinforced Concrete Columns Using Insulating Mortar (단열모르타르를 이용한 고강도콘크리트 기둥의 폭렬저감 방안)

  • Yoo, Suk-Hyeong;Lim, Seo-Hyeong
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.8-13
    • /
    • 2011
  • High Strength Concrete (HSC) has a disadvantage of the brittle failure under fire due to the spalling. The studies on spalling control method of new constructed HSC buildings were performed enough, but the studies on existing buildings are insufficient. The new inorganic refractory mortar is developed in this study. The insulating capacity is enhanced by using light weight fine aggregate and polypropylene (PP) fiber. In results of material test, the thermal conductivity of light weight fine aggregate get lower than general fine aggregate. And in results of column test, the fire resisting time is delayed 20 minutes by using light weight fine aggregate, 10 minutes by increasing finishing depth from 10 mm to 20 mm and 4 minutes by using 0.6 % PP fiber.

A Study on the Effective Length Factor for Steel Plate-Concrete Structures using Cementless Concrete (무시멘트 콘크리트를 활용한 강판콘크리트 구조의 유효좌굴길이 계수 분석에 관한 연구)

  • Han, Myoung-Hwan;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.661-671
    • /
    • 2018
  • Domestic studies on steel plate concrete structures have focused on nuclear structures with high strength. In this study, the SC structure was applied to the general structure, and the SC structure that is advantageous in terms of safety and construction was limited to a special structure. As a basic study for applying SC, this paper proposes basic design information of a SC structure applying cement concrete to plan the structure, which is suitable for eco - friendliness by replacing concrete cement, an important factor in a SC structure, with blast furnace slag. This study examined the compression characteristics and the effective length factor under central compression load. To calculate the effective length factor, the Euler column theory was applied without applying plate theory. The effective length factor was calculated from the yield strength of the steel plate, buckling of the steel plate, and the point at which the concrete was broken. In addition, this study examined whether the maximum compressive strength meets the national and international reference equations with the slenderness ratio (B/t) as a parameter. By analyzing the buckling of the specimen by applying the column theory and selecting the strain of the measured steel plate, the effective length factor was analyzed and compared with the value presented in the reference equation.