• 제목/요약/키워드: high strength concrete beam

검색결과 471건 처리시간 0.025초

고강도 폴리머 콘크리트 C 형보의 응력블럭 고찰 (The Investigation of Stress Block of C-Shaped Specimen for High-Strength Polymer Concrete)

  • 김관호;연규석;김남길;박광수;신수균;이준구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.1023-1028
    • /
    • 2001
  • This study was conducted to develop a procedural method to produce a high strength polymer concrete using polyester resin to experimentally examine the stress block properties of the high strength polymer concrete. C-shaped specimens were Produced and test to compute parameter of the stress block. They were $k_{1}$ : 0.73 and $\gamma$ : 0.845, respectively. $k_{1}$ is the ratio of the depth of the maximum compressive strength of the beam

  • PDF

A minimum ductility design method for non-rectangular high-strength concrete beams

  • Au, F.T.K.;Kwan, A.K.H.
    • Computers and Concrete
    • /
    • 제1권2호
    • /
    • pp.115-130
    • /
    • 2004
  • The flexural ductility of solid rectangular reinforced concrete beams has been studied quite extensively. However, many reinforced concrete beams are neither solid nor rectangular; examples include T-, ${\Gamma}$-, ${\Pi}$- and box-shaped beams. There have been few studies on the flexural ductility of non-rectangular reinforced concrete beams and as a result little is known about the possible effect of sectional shape on flexural ductility. Herein, the effect of sectional shape on the post-peak flexural behaviour of reinforced normal and high-strength concrete beams has been studied using a newly developed analysis method that employs the actual stress-strain curves of the constitutive materials and takes into account the stress-path dependence of the stress-strain curve of the steel reinforcement. It was revealed that the sectional shape could have significant effect on the flexural ductility of a concrete beam and that the flexural ductility of a T-, ${\Gamma}$-, ${\Pi}$- or box-shaped beam is generally lower than that of a solid rectangular beam with the same overall dimensions and the same amount of reinforcement provided. Based on the numerical results obtained, a simple method of ensuring the provision of a certain minimum level of flexural ductility to non-rectangular concrete beams has been developed.

Experimental study on RC beams externally bonded by CFRP sheets with and without end self-locking

  • Chaoyang Zhou;Yanan Yu;Chengfeng Zhou;Xuejun He;Yi Wang
    • Steel and Composite Structures
    • /
    • 제48권5호
    • /
    • pp.599-610
    • /
    • 2023
  • To avoid debonding failure, a novel type of hybrid anchorage (HA) is proposed in this study that uses a slotted plate to lock the ends of the fiber-reinforced polymer (FRP) sheet in addition to the usual bonding over the substrate of the strengthened member. An experimental investigation was performed on three groups of RC beams, which differed from one another in either concrete strength or steel reinforcement ratio. The test results indicate that the end self-locking of the CFRP sheet can improve the failure ductility, ultimate capacity of the beams and its utilization ratio. Although intermediate debonding occurred in all the strengthened beams, it was not a fatal mode of failure for the three specimens with end anchorage. Among them, FRP rupture occurred in the beam with higher concrete strength and lower steel reinforcement ratio, whereas the other two failed by concrete crushing. The beam strengthened by HA obtained a relatively high percentage of increase in ultimate capacity when the rebar ratio or concrete strength decreased. The expressions in the literature were inspected to calculate the critical loads at intermediate debonding, FRP rupturing and concrete crushing after debonding for the strengthened beam. Then, the necessity of further research is addressed.

연화 스트럿-타이 모델에 의한 고강도 철근콘크리트 깊은 보의 전단강도 예측에 관한 연구 (A Study on Shear Strength Prediction for Reinforced High-Strength Concrete Deep Beams Using Softened Strut-and-Tie Model)

  • 김성수;이우진
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권4호
    • /
    • pp.159-169
    • /
    • 2003
  • 춤이 깊은 보 설계를 위한 현행 ACI 기준은 콘크리트 압축강도 40MPa이하의 실험결과를 바탕으로 한 반 경험적인 제안식으로서 40MPa이상 고강도콘크리트의 사용이 증가됨에 따라 현행 기준의 고강도 깊은 보에 대한 적용성 평가가 요구되고 있다. 고강도 깊은 보의 전단강도 예측을 위하여 본 연구에서는 콘크리트강도와 모멘트효과를 고려한 수정 연화 스트럿-타이 모델을 제시하였다. 제안모델 평가를 위하여 4개의 시험체를 제작하였으며, 콘크리트 압축강도 49~78MPa로 제작된 74개의 기존 실험 데이터를 적용하여 ACI 318-99 11.8기준, ACI 318-02 부록 A STM의 해석결과와 비교 평가하였다.

화재시 철근 콘크리트 보 내부 온도의 해석적 추정 (Analytical Estimation of Internal Temperature of RC Beam under Fire)

  • 이은주;신미경;강지연;신영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.548-551
    • /
    • 2004
  • The main purpose of this study is to estimate the internal temperature of RC beam under fire. For this purpose, the finite difference method was used. In the previous studies, the structural behavior of fire damaged RC beams was investigated through experiments. The result was concluded that The high temperature affects the properties of concrete such as the elastic modulus, the compressive strength. The internal temperature Estimation of the concrete is helpful for understanding the structural behavior of fire damaged RC beams. Especially, high strength concrete has more spalling than normal strength one. So, this study is performed analysis of internal temperature of RC beam considering spalling.

  • PDF

보 단부 부착시험체에 의한 높은마디 철근의 부착성능 (Evaluate Bond strength of high Relative Rib Area Bars Using Beam-end test specimens)

  • 서동민;양승열;홍기섭;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.112-115
    • /
    • 2004
  • Bond between reinforcing bar and surrounding concrete is supposed to transfer load safely in the process of design of reinforced concrete structures. Bond failure of reinforcing bar generally take place by splitting of the concrete cover as bond force between concrete and reinforcing bars exceeds the confinement of the concrete cover and reinforcement. However, the confinement force has a limitation. Thus, the only variable is the bearing angle corresponding to the change of bond force. Higher rib height bars possessing higher shearing resistance can maintain higher bearing angle and higher splitting resistance when bars are highly confined, and consequently higher bond strength, than lower rib higher bars. In this study, from the evaluate bond strength of high Relative Rib Area Bars Using beam-end test specimens are compared with the current provisions for development of reinforcement, and the improved design method of bond strength is proposed.

  • PDF

Nominal axial and flexural strengths of high-strength concrete columns

  • Al-Kamal, Mustafa Kamal
    • Computers and Concrete
    • /
    • 제24권1호
    • /
    • pp.85-94
    • /
    • 2019
  • The ACI building code is allowing for higher strength reinforcement and concrete compressive strengths. The nominal strength of high-strength concrete columns is over predicted by the current ACI 318 rectangular stress block and is increasingly unconservative as higher strength materials are used. Calibration of a rectangular stress block to address this condition leads to increased computational complexity. A triangular stress block, derived from the general shape of the stress-strain curve for high-strength concrete, provides a superior solution. The nominal flexural and axial strengths of 150 high-strength concrete columns tests are calculated using the proposed stress distribution and compared with the predicted strength using various design codes and proposals of other researchers. The proposed triangular stress model provides similar level of accuracy and conservativeness and is easily incorporated into current codes.

An innovative solution for strengthening of old R/C structures and for improving the FRP strengthening method

  • Tsonos, Alexander G.
    • Structural Monitoring and Maintenance
    • /
    • 제1권3호
    • /
    • pp.323-338
    • /
    • 2014
  • In this study a new innovative method of earthquake-resistant strengthening of reinforced concrete structures is presented for the first time. Strengthening according to this new method consists of the construction of steel fiber ultra-high-strength concrete jackets without conventional reinforcement which is usually applied in the construction of conventional reinforced concrete jackets. An innovative solution is proposed also for the first time that ensures a satisfactory seismic performance of existing reinforced concrete structures, strengthened by using composite materials. The weak point of the use of such materials in repairing and strengthening of old R/C structures is the area of beam-column joints. According to the proposed solution, the joints can be strengthened with a steel fiber ultra-high-strength concrete jacket, while strengthening of columns can be achieved by using CFRPs. The experimental results showed that the performance of the subassemblage strengthened with the proposed mixed solution was much better than that of the subassemblage retrofitted completely with CFRPs.

고강도 철근과 콘크리트 강도수준에 따른 최적조합에 관한 연구 (A Study about the Optical Mixing in accordance with High-Strength Steel and Concrete Strength Levels)

  • 최판길;이봉학
    • 산업기술연구
    • /
    • 제26권B호
    • /
    • pp.111-118
    • /
    • 2006
  • The reinforced concrete structure is one of the most popular structures in real construction. Concrete has been strengtened rapidly due to the development of new material and construction technology. But as the concrete has been getting stronger, the brittleness of material has increased and the better ductility has been required. So, the study for strengthening stiffener has been urgently needed. As we said above, it is expected that the use of high strength steel and concrete will be increased. However, The experimental data is not enough for solving problems of the use of high strengthened steel and concrete. In this research, we analyzed 45 combinations of the strength levels of concrete, the thickness of material and the steel strength with regard to simple Reinforced Concrete SLAB Beam bridge. The program MIDAS CIVIL was used to find the optimal combination. As a result, it was found that strength ratio per unit section is in inverse proportion to the strength of material and that the strengths of steel are respectively 400 MPa for low strengthened concrete and 300 MPa for high strengthened concrete. For economic aspect and usability, the effect of high strength steel is not as high as we expected it would be.

  • PDF

Belite 시멘트를 이용한 고성능 콘크리트의 철근 부착성능 실험연구 (An experimental study on Bond strength of Reinforcing steel to High-performance Concrete using Belite Cement)

  • 조필규;김상준;강지훈;김영식;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.408-415
    • /
    • 1997
  • Bond strength of reinforcing bar to high-performance concrete using Belite cement is explored using beam end test specimen. The key parameters for the bond test are slump of concrete, top bar effect, and strength of concrete in addition to concrete covers. Specimen failed in the typical brittle bond failure splitting the concrete cover as the wedging action. The test results show that for the group with portland cement I using superplasticizer additional slump does not decrease the bond strength of the top bar is less than bond strength of bottom bar, but the top bar factor satisfy the modification factor for top reinforcement. The result also show that bond strength is function of square root of concrete compressive strength and cover thickness. More detailed evaluation will be conducted from the test specimen with high strength concrete using the belite cement.

  • PDF