• Title/Summary/Keyword: high strength automotive steel

Search Result 246, Processing Time 0.03 seconds

Roll Forming Analysis for High Strength Steel Bumper Process (고장력강 범퍼 빔의 롤 포밍 공정)

  • Kim, Dong Hong;Jung, Dong Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.797-801
    • /
    • 2013
  • Today's automotive industry is evolving toward low-emissions or zero-emissions high-efficiency vehicles. Highly efficient power sources are required, as well as high strength steels for various parts to increase safety. In this study, we investigated the roll-forming process for the development of high strength, lightweight steel bumper beams. The roll-forming process was analyzed using the software package Shape-RF in combination with a rigid-plastic finite element method model. An optimal roll-forming process based on roll-pass was obtained using finite element method simulations.

Effect of Prior Structure on Torsional Fatigue Strength of Induction Surface Hardened Medium Carbon Steel (고주파 표면경화된 중탄소강의 비틀림 피로강도에 미치는 초기조직의 영향)

  • Kim, Heung-Jip;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.247-257
    • /
    • 1998
  • In order to evaluate the relation between prior structure and fatigue strength on a induction surface hardened medium carbon steel(SAE1050M) for automotive drive shafts, torsional fatigue test were conducted with various cases of different hardened depths and applied loads. Prior structures of the steel such as pearlite, fine pearlite and spheroidal pearlite were prepared by conventional nomalizing, tempering after quenching and spheroidized annealing, respectively. Maximum torsional fatigue strength can be obtained when the case depth is 18~25% diameter of the bar in each prior structure. The effect of case depth on the torsional fatigue strength was different depending on applied load to specimen, but the most good fatigue life was shown in the case of pearlitic structure when the case depth was 4.0~5.5mm(18~25% of bar diameter). Among three different prior structures, energy consumption, to obtain high strength or to get the same case depth, was the most saved in the case of pearlitic structure.

  • PDF

Welding Properties of 1000MPa Class High Strength Steel Sheets for Car Body Using Disk Laser (자동차용 1000MPa급 고장력 강판의 Disk 레이저용접 특성)

  • Seol, Hyun-Uk;Song, Mun-Jong;Lee, Kyu-Hyun;Lee, Mun-Yong;Kim, Sok-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.8-12
    • /
    • 2012
  • Application for laser welding have increased steadily in recent years due to its benefits such as high speed, high productivity and high density energy heat source. In this study, the influence of welding parameters was investigated on penetration characteristics, mechanical properties including formability test in disk laser welded 1000MPa class steels. A shielding gas was used and bead-on-plate test was performed with various welding speeds. The main welding test was performed by butt welding with various welding speeds at 2.5 kW laser power.

Analysis on Deformation Behavior of High Strength Steel using the Finite Element Method in Conjunction with Constitutive Model Considering Elongation at Yield Point (항복점연신이 고려된 유한요소 해석을 통한 고강도강의 변형 거동 연구)

  • Yoon, Seung Chae;Moon, Man Been;Kim, Hyoung Seop
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.598-604
    • /
    • 2010
  • Tensile tests are widely used for evaluating mechanical properties of materials including flow curves as well as Young's modulus, yield strength, tensile strength, and yield point elongation. This research aims at analyzing the plastic flow behavior of high strength steels for automotive bodies using the finite element method in conjunction with the viscoplastic model considering the yield point elongation phenomenon. The plastic flow behavior of the high strength steel was successfully predicted, by considering an operating deformation mechanism, in terms of normalization dislocation density, and strain hardening and accumulative damage of high strength steel using the modified constitutive model. In addition, the finite element method is employed to track the properties of the high strength steel pertaining to the deformation histories in a skin pass mill process.

Automotive Rim Manufacturing using Flow Forming (유동성형을 이용한 자동차 림 가공)

  • Oh, J.H.;Kim, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.379-381
    • /
    • 2009
  • In designing full vehicle, crash safety, fuel efficiency, exhaust gas, and driving stability are very important factors. Especially, automotive wheel which supports total vehicle weight is a critical component in view of driving stability. Most of automotive wheel have been manufactured for beautiful appearance by using aluminum alloy in domestic industry. However, the amount of automotive steel wheel used are on an increasing trend according to developing the advanced high strength steel with good formability property recently. In this study, the circumferential deviation of rim with various thickness and yield strength was investigated. The formability evaluation of the rim was developed by using a finite element module furnished by Forge software.

  • PDF

Hydroforming Process Design of High-Strength Steel Tube (고장력강 관재 액압성형 공정 설계)

  • Kim, K.J.;Kim, H.Y.;Ko, H.G.;Shin, M.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.202-205
    • /
    • 2009
  • Tubular torsion beam of high strength steel is going about in an automotive rear axle due to the advantages of light weight and efficient rear packaging capability. High strength tubular beam can be manufactured by the hydroforming in order to ensure dimensional accuracy, while a conventional stamping has been used for steel tubular beam. Internal pressure, feeding and their combination are the key factors of controlling the process. Based on the numerical simulation and try-outs, the optimized hydroforming process conditions for the high strength tubular beam were suggested.

  • PDF

Bead Optimization to Reduce Springback of Sheet Metal Forming using High Strength Steel (HSS강판 판재성형 시 스프링백 최소화를 위한 드로우 비드 최적 설계)

  • Hong, Seokmoo;Hwang, Jihoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.350-354
    • /
    • 2014
  • Recently, high strength steel (HSS) sheet metal has been widely used to improve lightweight structures in the automotive industry. Because HSS sheets have high strength but low elongation, it is difficult both to make products with complex shapes and to control excessive springback. In order to reduce the springback after forming using HSS, draw beads were introduced in this study. The design variables, including the draw-bead positions and shapes, were optimized using a finite element analysis. A mold for a scanner support, which is part of an A3 printer, was designed using the proposed method and then utilized. The results from a finite element simulation and optimization were compared with the experiment results.

Light weight vehicle design by stick model (스틱모델에 의한 차체 경량화 설계)

  • 김천욱;김지홍
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.97-106
    • /
    • 1990
  • A method of weight evaluation of the load-bearing structural elements of cars is presented and the weight ratio of the analysis model is investigated. Replacing the materials of floor elements of the car into the high-strength steel, a considerable weight-reduction of the model has been obtained. The 1500cc model is selected for the present study and the stick model analysis is employed for the structural analysis. The torsional stiffness of the weight-reduced model is also evaluated and it is shown it has a reasonable rigidity. The ratio of the weight of the load-bearing structural elements to the unladen vehicle weight of cars is about 0.12for the 1500cc model and the weight-reduction of this study can be obtained around 17% of the weight of the load-bearing structural elements.

  • PDF

Effect of ε-carbide (Fe2.4C) on Corrosion and Hydrogen Diffusion Behaviors of Automotive Ultrahigh-Strength Steel Sheet (초고강도급 자동차용 강재 내 ε-carbide (Fe2.4C)가 부식 및 수소확산거동에 미치는 영향)

  • Park, Jin-seong;Yun, Duck Bin;Seong, Hwan Goo;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.295-307
    • /
    • 2021
  • Effects of ε-carbide (Fe2.4C) on corrosion and hydrogen diffusion behaviors of ultra-strong steel sheets for automotive application were investigated using a number of experimental and analytical methods. Results of this study showed that the type of iron carbide precipitated during tempering treatments conducted at below A1 temperatures had a significant influence on corrosion kinetics. Compared to a steel sample with cementite (Fe3C), a steel sample with ε-carbide (Fe2.4C) showed higher corrosion resistance during a long-term exposure to a neutral aqueous solution. In addition, the diffusion kinetics of hydrogen atoms formed by electrochemical corrosion reactions in the steel matrix with ε-carbide were slower than the steel matrix with cementite because of a comparatively higher binding energy of hydrogen with ε-carbide. These results suggest that designing steels with fine ε-carbide distributed uniformly throughout the matrix can be an effective technical strategy to ensure high resistance to hydrogen embrittlement induced by aqueous corrosion.

Springback Analysis of the Front Side Member with Advanced High Strength Steel (고강도 강판을 적용한 프런트 사이드 멤버의 스프링백 해석)

  • Song J. H.;Kim S. H.;Park S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.106-109
    • /
    • 2005
  • Springback is a common phenomenon in sheet metal forming, caused by the elastic recovery of the internal stresses after removal of the tooling. Recently, advanced high strength steels (AHSS) such as TRIP and DP are finding acceptance in the automotive industry because their superior strength to weight ratio can lead to improved fuel efficiency and assessed crashworthiness of vehicles. The major troubles of the automotive structural members stamped with high strength steel sheets are the tendency of the large amount of springback due to the high yield strength and the tensile strength. The amount of springback is mainly influenced by the type of the yield function and anisotropic model induced by rolling. The discrepancy of the deep drawn product comparing the data of from the product design induced by springback must be compensated at the tool design stage in order to guarantee its function and assembly with other parts. The methodology of compensation of the low shape accuracy induced by large amount of springback is developed by the expert engineer in the industry. Recently, the numerical analysis is introduced in order to predict the amount of springback and to improve the shape accuracy prior to tryout stage of press working. In this paper, the tendency of springback is evaluated with respect to the blank material. The stamping process is analyzed fur the front side member formed with AHSS sheets such as TRIP60 and DP60. The analysis procedure fully covers the binderwrap, stamping, trimming and springback process with the commercial elasto-plastic finite element code LS-DYNA3D.

  • PDF