• 제목/요약/키워드: high strength automotive steel

검색결과 246건 처리시간 0.024초

금형변형을 고려한 성형 CAE에서의 스프링백 예측정확도 향상 (Improvement in Prediction Accuracy of Springback for Stamping CAE considering Tool Deformation)

  • 박정수;최현준;김세호
    • 소성∙가공
    • /
    • 제23권6호
    • /
    • pp.380-385
    • /
    • 2014
  • An analysis procedure is proposed to improve the prediction accuracy of springback as well as to evaluate the structural stability of the tooling used for fabricating a side sill part from UHSS. The analysis couples the stamping analysis and the subsequent analysis of the tool structural. The deformation and stress results for the tool structure are obtained from the proposed analysis procedure. The results show that the amount of deformation and stresses are so high that the tool structure must be reinforced and the tooling design must consider structural stability. Springback is predicted with CAE in order to compare the prediction accuracy between the given tool geometry and the geometry from the structural analysis. The simulation results with the deformed tool can predict the experimental springback tendency accurately.

An Overview of The Commercialisation of The Spray Forming Process

  • Leatham, Alan
    • 한국분말재료학회지
    • /
    • 제3권4호
    • /
    • pp.227-232
    • /
    • 1996
  • (i) The development of a metallurgical bond during the spray forming of clad products has offered the possibility of manufacturing large rolls, including those used in hot and cold strip mills. Small rolls are already being produced in Japan. (ii) Technical developments, including the use-of-multi-atomizers have resulted in the elimination of porosity from the internal bore of a sprayed tube. Bimetallic tubing can also be manufactured and the installation of a 4.5 ton tube plant in the USA should provide low operation costs. (iii) Spray forming offers a potentially low cost manufacturing route for superalloy ring/casing components in high strength superalloys. (iv) A large pilot plant has been built for the spray forming of ultra-clean superalloys for turbine disc applications. (v) Using twin-atomizing technology, special steel billets have been spray formed up to 400mm diameter with deposition yields in excess of 90%. (vi) Al/Si alloy extrusion billets with excellent dimensional tolerances are being manufactured for large scale automotive applications. Several new aluminum alloys have also been developed, including high strength, low density and low cocfficient of expansion materials. (vii) New copper alloys have been developed and pilot plants are in operation to produce these alloys once markets have become established.

  • PDF

차량 경량화를 위한 최적설계에 관한 연구 (A Study on the Optimal Design for Lightweight Vehicle Dash)

  • 이경일
    • 한국기계가공학회지
    • /
    • 제19권12호
    • /
    • pp.14-20
    • /
    • 2020
  • Currently, the automotive market is intensively researching eco-friendly vehicles such as EV vehicles and hydrogen vehicles. Further, research and developments for the future markets such as autonomous vehicles and the connective cars are coped up continuously along with the rising fuel economy regulations and the emission regulations. In this development, various sensors, batteries, and control devices are fused in order to decrease the weight of the vehicle. Moreover, since the fuel economy regulation is an issue, research on the weight reduction of body parts is underway. Therefore, in this work, a study is conducted to obtain the optimal design of the Dash part that separates the engine room and the passenger seat of the vehicle body by combining lightweight materials with high rigidity materials. The optimal design was obtained using the Finite Element Analysis. Further, AL5083 was used as the lightweight material and ASBC1470 was used for high strength materials. The parts made with this combination of materials had strength equivalent to that of the existing steel and the weight was reduced by 10%.

Influence of interfacial adhesive on the failure mechanisms of truss core sandwich panels under in-plane compression

  • Zarei, Mohammad J.;Hatami, Shahabeddin;Gholami, Mohammad
    • Steel and Composite Structures
    • /
    • 제44권4호
    • /
    • pp.519-529
    • /
    • 2022
  • Sandwich structures with the superior mechanical properties such as high stiffness and strength-to-weight ratio, good thermal insulation, and high energy absorption capacity are used today in aerospace, automotive, marine, and civil engineering industries. These structures are composed of moderately stiff, thin face sheets that withstand the majority of transverse and in-plane loads, separated by a thick, lightweight core that resists shear forces. In this research, the finite element technique is used to simulate a sandwich panel with a truss core under axial compressive stress using ABAQUS software. A review of past experimental studies shows that the bondline between the core and face sheets plays a vital role in the critical failure load. Therefore, this modeling analyzes the damage initiation modes and debonding between face sheet and core by cohesive surface contact with traction-separation model. According to the results obtained from the modeling, it can be observed that the adhesive stiffness has a significant influence on the critical failure load of the specimens. To achieve the full strength of the structure as a continuum, a lower limit is obtained for the adhesive stiffness. By providing this limit stiffness between the core and the panel face sheets, sudden failure of the structure can be prevented.

소결된 텅스텐 재료의 용매에 의한 특성 평가 (Evaluation on Mechanical Properties of Sintered Tungsten Materials by Solvents)

  • 박광모;이상필;이진경
    • 한국산업융합학회 논문집
    • /
    • 제24권3호
    • /
    • pp.289-294
    • /
    • 2021
  • Tungsten (W) is used as a facing material for nuclear fusion reactors, and it is used in conjunction with structural materials such as copper alloy (CuCrZr), graphite, or stainless steel. On the other hand, since tungsten is a material with a high melting point, a method that can be manufactured at a lower temperature is important. Therefore, in this study, tungsten, which is a facing material, was attempted to be manufactured using a pressure sintering method. Material properties of sintered tungsten materials were analyzed for each solvent using two types of solvents, acetone and polyethylene glycol. The sintered tungsten material using acetone as a solvent exhibited a hardness value of about 255 Hv, and when polyethylene glycol was used, a hardness value of about 200 Hv was shown. The flexural strength of the sintered tungsten material was 870 MPa and 307 MPa, respectively, when acetone and polyethylene glycol were used as solvents. The sintered tungsten material using acetone as a solvent caused densification between particles, which served as a factor of increasing the strength.

고압비틀림 성형 공정에 의한 Al 분말의 초미세결정 벌크화 및 특성 평가 (Microstructure and Mechanical Behavior of Ultrafine Grained Bulk Al Processed by High Pressure Torsion of the Al Powders)

  • 주수현;윤승채;이종수;김형섭
    • 한국분말재료학회지
    • /
    • 제17권1호
    • /
    • pp.52-58
    • /
    • 2010
  • Bulk nanostructured metallic materials are generally synthesized by bottom-up processing which starts from powders for assembling bulk materials. In this study, the bottom-up powder metallurgy and High Pressure Torsion (HPT) approaches were combined to achieve both full density and grain refinement at the same time. After the HPT process at 473K, the disk samples reached a steady state condition when the microstructure and properties no longer evolve, and equilibrium boundaries with high angle grain boundaries (HAGBs) were dominant. The well dispersed alumina particles played important role of obstacles to dislocation glide and to grain growth, and thus, reduced the grain size at elevated temperature. The small grain size with HAGBs resulted in high strength and good ductility.

상변태를 고려한 핫프레스포밍 공정의 유한요소해석 (FE Analysis of Hot Press Forming Process considering the Phase Transformation)

  • 강경필;이경훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.226-229
    • /
    • 2008
  • Hot press forming is an advanced forming technology fur manufacturing of complex and crash-resistant automotive parts using ultra high strength steels. The 3-dimensional FE analysis of hot press forming process, in which process the deformation, heat transfer and phase transformation behavior are fully coupled, is carried out. The vast amount of material properties for the FE analysis is obtained from material properties calculation software which is based on thermodynamic calculations. The overall methodology for the FE analysis of HPF process and the analysis results are discussed here.

  • PDF

측정지연이 있는 ROT 공정의 외란제거를 위한 SPDR 제어기 설계 (SPDR Scheme for Disturbance Reduction in ROT Process with Measurement Delay)

  • 박철재
    • 제어로봇시스템학회논문지
    • /
    • 제20권10호
    • /
    • pp.1023-1029
    • /
    • 2014
  • In this paper, we propose an SPDR (Smith Predictor for Disturbance Reduction) scheme to improve the temperature control by reduction of the disturbance in ROT process with measurement delay. The proposed controller is a combination of Astrom's modified Smith predictor with a disturbance reduction controller and a grey predictor. The grey prediction is used to calculate the inverse of the measurement delay and to predict future variations and tendencies of system output. The simulation results demonstrate the successful performance of the proposed disturbance reduction controller and enhance the robustness of the proposed control scheme.

TAS (Total Analysis System)를 이용한 SB-TRIP강에서의 2-D & 3-D 미세구조 분석 연구 (2-D & 3-D Observations on the microstructures of Super Bainitie TRIP Steels using Total Analysis System)

  • 설재복;임영록;박찬경
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.209-212
    • /
    • 2009
  • It has been widely reported that carbide-free bainitic steels or super-bainite WP (SB-TRIP) steels for the automotive industry are a new family of steels offering a unique combination of high strength and ductility. Hence, it is important to exactly evaluate the volume fraction of RA and to identify the 3-D morphology of constituent phases, because it plays a crucial role in mechanical properties. Recently, as electron back-scattered diffraction (EBSD) equipped with focused ion beam (FIB) has been developed, 3-D EBSD technique for materials science are used to these steels. Moreover, newly developed atom probe tomography (APT) technique can provide the exact distribution and chemical concentration of alloying elements in a sub-nm scale. The APT analysis results indicate exactly the distribution and composition of alloying elements in the austenite and bainite phases of SB-TRIP steels with the atomic-scale resolution. And thus, no partitioning of aluminum and manganese atoms was showed between the austenite containing $7.73{\pm}0.39$ at% C and the bainitic ferrite associated with $0.22{\pm}0.06$ at% C in the SB-TRIP steel.

  • PDF

툴 경로제어를 이용한 Al/Fe 이종금속 마찰교반점용접 공정특성 평가 (Effect of Circumferential Tool Path Control on Friction Stir Spot Welding of Al/Fe Dissimilar Metal Joint)

  • 윤진영;김철희;이세헌
    • Journal of Welding and Joining
    • /
    • 제34권3호
    • /
    • pp.6-11
    • /
    • 2016
  • Joining Al/Fe dissimilar metals is becoming a subject of special interest in the assembly of automotive parts as a trade-off between the weight lightening and the cost reduction. Although various studies have been introduced to join Al alloy with the steel sheet by fusion welding, weak joint strength and galvanic corrosion still remained as problems to be solved. As a solid state welding, friction stir welding has been preferred to fusion welding processes in the dissimilar metal joints. This study investigated friction stir spot welding (FSSW) of Al alloy to the thin steel sheet with a thickness of 0.65 mm. The conventional FSSW is a stationary spot welding process but new approach adopted an additional circumferential movement in company with high speed tool rotation. A full factorial experimental design was implemented, and the main and interaction effects of parameters were analysed on the failure load in the tensile shear test. The direction and radius of rotation were statistically significant parameters and these two parameters affected the joint width and the shape of the hook.