• 제목/요약/키워드: high strength automotive steel

검색결과 245건 처리시간 0.021초

핫스템핑 공법을 이용한 Front Bumper Beam 최적화 (The optimization of front bumper beam using Hot stamping Technology)

  • 김동학;김광순;나성준;엄인섭
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.241-244
    • /
    • 2008
  • Automotive companies have conducted a study for light weigh body and crash safety. But It is difficult to adapt a mass production because of formability with high strength steel in the conventional stamping process. Recently, Automotive maker in the Europe, USA, Japan has applied a hot stamping with boron steel in the body structure. Hot stamping technology spread fast in various body parts of automobile. Bumper beam has been applied in the foreign automotive company so much nowadays. In this study, We will optimize crash performance of bumper beam using hot stamping through comparison with conventional bumper beam.

  • PDF

자동차용 알루미늄/복합재료 하이브리드 동력전달축의 압입접합부 설계에 관한 연구 (A study on the design of the press fit joint for automotive aluminum/composite hybrid propeller shaft)

  • 김학성;이대길
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.226-231
    • /
    • 2004
  • Press fitting method for joining of a hybrid tube and steel ring with small teeth for automotive aluminum/composite hybrid propeller shaft was devised to improve reliability and to reduce manufacturing cost, compared to other joining methods such as an adhesively bonded joint, bolted joint or welded joint. To obtain high strength of the press fit joint, an optimal design method for the teeth was devised with respect to number and shape of the steel teeth. Torsional static, fatigue tests and finite element analysis of the press fit joint were performed with respect to experimental variables. The developed optimal design method predicted well the static torque capability and failure mode of the press fit joint. Also, it provided design guide line of press fit joint for improving torsional static and fatigue characteristics.

  • PDF

0.27% C-1.5% Mn-1.0% Cr 강의 미세조직과 기계적성질에 미치는 Si의 영향 (Effect of Si on Mechanical Properties and Microstructure in 0.27% C-1.5% Mn-1.0% Cr Steel)

  • 정우창
    • 열처리공학회지
    • /
    • 제30권3호
    • /
    • pp.117-126
    • /
    • 2017
  • The variation in microstructure and mechanical properties during heat treatment was examined in a series of 0.27% C-1.5% Mn-1.0% Cr steels with silicon contents in the range of 0 to 1.0 wt%. It was found that addition of 0.5%~1.0% silicon increased both tensile strength and impact toughness through solid solution strengthening and microstructural refinement. 0.27% C-1.0% Si-1.5% Mn-1.0% Cr steel showed tensile strength of 1,700 MPa in the as-quenched condition and the steel revealed a full martensitic structure even after air cooling from $900^{\circ}C$ to room temperature, showing air hardening characteristics. Tempering at $150^{\circ}C$ which corresponds to the typical paint-baking temperature after painting of body in white, slightly decreased the tensile strength and increased elongation, but substantially increased the impact toughness compared to the as-quenched steel.

CRASHWORTHINESS ASSESSMENT OF SIDE IMPACT OF AN AUTO-BODY WITH 60TRIP STEEL FOR SIDE MEMBERS

  • Huh, H.;Lim, J.H.;Song, J.H.;Lee, K.S.;Lee, Y.W.;Han, S.S.
    • International Journal of Automotive Technology
    • /
    • 제4권3호
    • /
    • pp.149-156
    • /
    • 2003
  • This paper is concerned with the energy absorption efficiency of auto-body side structures for the conventional steel and 60TRIP high strength steel. In order to evaluate the energy absorption efficiency, the dynamic crash analysis is carried out with the regulation of US-SINCAP. The analysis adopts the Johnson-Cook model for the dynamic material properties, which have been obtained from dynamic material tests. For the sake of the dynamic material properties, the analysis has been accurately peformed for the crashworthiness assesment. The analysis result provides deformed shapes, amounts of penetration and accelerations at several important points during crash. The result confirms that 60TRIP greatly improves the crashworthiness of the side members without sacrificing the weight and thus can be used for the light-weight design of an auto-body.

국부 경화 열처리된 차체 부품의 기계적 성질과 미세조직에 관한 연구 (A Study on Mechanical Properties and Microstructure of Local-Hardening Heat-Treated Automotive Panel)

  • 이재호;정우창
    • 열처리공학회지
    • /
    • 제23권6호
    • /
    • pp.301-308
    • /
    • 2010
  • A steel with chemical composition, 0.22% C, 0.25% Si, 1.26% Mn, 0.22% Cr, 0.04% Ti, 0.0042% B, and a microstructure of ferrite and spheroidized cementite has been press-formed to automotive center pillar followed by local-hardening heat-treatment. Hardness, tensile properties, fractography, microstructure and surface roughness of local-hardening heat-treated automotive center pillar have been examined. The directly heated and quenched area had fully martensitic structure with Vickers hardenss in the range of 500 to 510. The heat affected area close to the directly heated area showed dual-phase structure of ferrite and martensite. The width of the heat-treated and heat-affected areas after the local-hardening heat treatment was ranging from 32 mm to 50 mm. The surface of the local-hardening heat-treated center pillar revealed some temper color as a consequence of the oxidation during the heat treatment, but the surface roughness was not affected by the local-hardening heat treatment.

자동차 터보충전기 터빈휠용 경량 고내열 주조 Ni기 초합금의 개발 (Development of New Ni-based Cast Superalloy with Low Density and High Temperature Capability for Turbine Wheel in Automotive Turbocharger)

  • 오키 유우타로;스미 요시노리;코야나기 요시히코
    • 한국주조공학회지
    • /
    • 제42권6호
    • /
    • pp.392-397
    • /
    • 2022
  • In order to compliant the stringent exhaust emission regulations, higher fuel efficiency and cleaner exhaust gas in combustion engines have been required. To improve combustion efficiency, an exhaust gas temperature is increasing, therefore higher temperature resistance is required for components in exhaust system, especially turbine wheel in turbocharger. IN100 looks quite attractive candidate as it has high temperature properties with low density, however it has low castability due to poor ductility at high temperature. In this study, the balance of Al and Ti composition was optimized from the base alloy IN100 to improve the high temperature ductility by expanding the γ single phase region below the solidification temperature, while obtaining the high temperature strength by maintaining the volume fraction of γ' phase equivalent to IN100 around 1000℃. Furthermore, the high temperature creep rupture life increased by adding a small amount of Ta. The alloy developed in this study has high castability, low density and high specific strength at high temperature.

롤포밍 공정을 이용한 고장력강 재질의 범퍼보강 차체판넬 개발에 관한 연구 (A Study on Development of Automotive Panel of Bumper Reinforcement with High Strength Steel Using Roll Forming Process)

  • 정동원;김동홍;김봉천
    • 한국정밀공학회지
    • /
    • 제29권8호
    • /
    • pp.840-844
    • /
    • 2012
  • Roll forming process is a sheet metal forming process where the forming occurs with rolls in several steps, often from an undeformed sheet to a product ready to use. And each pair of forming rolls installed in a forming machine operates a particular role in making up the required final cross-section. This process used to many industry manufactures and recently apply to automotive industry. This study, FEM simulation applied bumper reinforcement using SHAPE-RF software and analyzed about total effective strain, longitudinal strain, thickness according to the roll-pass.

자동차의 안정성을 고려한 고인성 충격흡수 강재로서 TRIP 형 복합상강의 기계적 성질 및 그 특성 (The Mechanical Properties and Characteristics of TRIP-assisted Multiphase Steels in High Toughness for Autombile Safety)

  • 이기열
    • 한국자동차공학회논문집
    • /
    • 제8권4호
    • /
    • pp.141-148
    • /
    • 2000
  • As the steel plates used for automobile safety the TRIP-assisted multiphase steels are being introduced to automobile industry with respect to their remarkable mechanical properties for the combination of high strength and large elongation. This multiphase structure is generated by two stage heat treatment (intercritical annealing & isothermal treatment) The metastable retained austenite can be transformed to martensite when plastically deformed which results in TRIP effect. Actually the microstructure of TRIP-assisted steels consist of a fine dispersite. There present discussion deals with bainite reaction kinetics of austenite in the process o f two stage heat treatment. In relation to bainite transformation the characteristics of bainite reaction is found to be influenced by the bainite tempering temperature and also by the relative rate in which carbides precipitate within residual austenite.

  • PDF